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1 Introduction

Classification of variable stars is important for scientific knowledge discovery and
allocation of resources for telescopic follow up. With increasing amounts of data,
it has become difficult for this task to be done manually. Future surveys will make
it even harder. For instance, GAIA is expected to discover ∼15 million periodic
variables over the course of a five year mission [6]. Tools from the machine learn-
ing and statistics communities will be critical for processing and understanding this
data. Several recent papers have used machine learning methods to aid in classifi-
cation e.g. [8, 3, 5]. These studies have focused on classifying fairly well sampled
light curves. Evaluation of classifier performance has been made relative to light
curves of similar quality, usually from the same survey.

In practice, light curves needing classification (the test set) will be labeled using
classifiers constructed on data which has already been labeled (the training set).
Systematic differences in cadence, observing region, flux noise, detection limits,
and number of flux measurements per light curve may exist between training and test
sets. Thus it is not clear that a classifier with good performance on the training set
will have good performance on the test set. These problems were noted in [4, 8]. In
this paper we focus specifically on the challenge of constructing a classifier on well
sampled light curves (≥ 200 flux measurements) to classify poorly sampled light
curves (≤ 100 flux measurements). This situation is likely to be encountered when
catalog data with well sampled light curves is used to classify data from ongoing
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surveys where light curves have only tens of flux measurements. In this setting,
metrics computed on the light curves and used for classification, termed features,
may contain error for the test set. A classifier constructed on the training set that
does not recognize that some features contain error in the test set may be suboptimal.
Figure 1 illustrates the problem.
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Fig. 1 The left plot shows two features, log(frequency) and qso log chi2 qsonu for well sampled
RR Lyrae Double Mode (red triangles) and Multiple Mode Cepheid (black circles) light curves
from OGLE. The right plot shows the same two features for the same sources when light curves
have been truncated at the first 30 flux measurements. The right plot is different from the left due to
error in estimating frequency and qso log chi2 qsonu for light curves with 30 flux measurements.
The vertical gray line was chosen by the statistical classifier CART (a popular classifier, see [2]),
trained on the well sampled curves, to separate the two classes. It works well on the well sampled
curves but does poorly on the poorly sampled curves. A classifier that uses qso log chi2 qsonu to
make a horizontal split will likely improve performance on the poorly sampled curves.

This paper is organized as follows. In Sect. 2 we discuss how to apply statis-
tical / machine learning classifiers to astronomical light curves, data assumptions
made by these classifiers, and two frameworks — noisification and denoisification
— for overcoming the problem of training on well sampled curves with the goal
of classifying poorly sampled curves. We describe an application of noisification
and denoisification to two data sets — simulated and OGLE — in Sect. 3. In Sect.
4 we discuss results and challenges associated with each method. Finally we offer
conclusions and suggestions for future development of this work in Sect. 5.

2 Methods

There are many methods available for performing statistical / machine learning clas-
sification. Some of the most popular include Random Forests, Support Vector Ma-
chines (SVM), Neural Nets, and Gaussian Mixture models (see [7] for an overview
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of these and others). Direct application of classifiers to irregularly sampled light
curves (i.e. the raw data) is challenging so for each light curve we compute a set of
metrics, called features. Features are chosen so as to separate light curves belong-
ing to different classes. Features we use include estimates of frequency, standard
deviation of flux measurements, and amplitude of flux measurements. We compute
62 features for each light curve. See [8] for descriptions of each feature. We call
the process of converting a light curve to a feature vector deriving features. With
each light curve represented by a class label and feature vector, standard classifi-
cation methods can be applied to construct the classifier. In this work we use the
Random Forest classifier, discussed in detail in [1]. However the problem of sys-
tematic differences between training and test sets and our proposed solutions hold
quite generally for essentially any classification method.

Classifiers nearly always assume that the relationship between class and features
is the same for the training and test sets. Specifically, if x is a vector of features
from the training set, y is a vector of features from the test set, and z is a possi-
ble class, then when x = y the probability of class z given features x or features y
must be the same, i.e. p(z|x) = p(z|y). As demonstrated in Fig. 1, this may not hold
when light curves in the training set have hundreds of flux measurements and light
curves in the test have, say 30, due to error in estimating features in the test light
curves. Violation of the assumption p(z|x) = p(z|y) will invalidate estimates of mis-
classification error provided by cross validation or any other method. Perhaps more
importantly, the classifier constructed without modification on the training set may
be suboptimal because the relationship between features and class is fundamentally
different in the training and test data. We now discuss two methods, noisification
and denoisification, for solving the problem.

2.1 Noisification

The principle behind noisification is simple: make the training data “look like” the
test data and use the modified training data to construct a classifier. Specifically, if a
test light curve has 40 flux measurements, truncate every light curve from the train-
ing set at 40 flux measurements, derive features for these 40 flux measurement light
curves, and construct a classifier using these features. We call this method noisifi-
cation because feature noise is added to the training set (by way of the truncation
process) in order to match the probability of class given test features with probabil-
ity of class given noisified features. Here we are assuming that the only difference
between light curves in the training and test sets is the number of flux measurements
observed. Cadence, flux error, and survey observing characteristics are assumed to
be the same.

As stated, noisification requires constructing a different classifier for each pos-
sible number of flux measurements a light curve in the test set might have. This
is computationally expensive and perhaps quite redundant since truncating train-
ing light curves at say, 40 and 41 flux measurements, deriving features for each,
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and then constructing two classifiers will result in two very similar classifiers. We
explore this issue and possible computational savings in Sec. 4.

Truncating the training data at the first 40 flux measurements is inherently arbi-
trary. We could select any 40 contiguous flux measurements, or better yet repeat the
entire noisification process B times, selecting different sets of 40 flux measurements
and averaging the results of the B classifiers. In this work we repeat the process
five times i.e. B = 5. Each noisified classifier outputs a vector of class probabilities
which we average across the five runs before selecting the class with the highest
posterior probability.

2.2 Denoisification

With denoisification, we first construct a classifier on the well sampled training data.
Given a test light curve with features y we infer what the features for this curve
would be if we had continued observing it for several hundred flux measurements.
The classifier then uses these inferred features to predict a class for the test light
curve. The process of inferring features is denoising, hence the name denoisification.
More formally, in trying to estimate p(z|y) we reframe the problem

p(z|y) =
∫

p(z|y,x)p(x|y)dx
=

∫
p(z|x)p(x|y)dx

=
∫

p(z|x)p(y|x)p(x)dx
p(y) . (1)

p(z|x,y) = p(z|x) because once we know the features estimated on a well sampled
curve, x, the features from the poorly sampled version of this curve, y, do not give us
any further information about the class of the light curve. p(z|x) is estimated using
the classifier constructed on the unmodified training data. Inferring the true features
for a poorly sampled light curve occurs in estimating p(x|y). We interpret this quan-
tity as given features y derived for a poorly sampled light curve, p(x|y) is the like-
lihood that if we continued observing this curve for hundreds of flux measurements
the derived features would be x. Directly estimating this quantity is challenging so
we rewrite it as p(y|x)p(x)/p(y) in the last line of the equation. This suggests that
we can denoise y by estimating the quantities p(y|x) and p(x).

There are many possibilities for estimating p(y|x) and p(x) in (1). We take the
following approach. Let x1, . . . ,xn be derived feature vectors from the training set
of size n. xi = (x1

i , . . . ,x
p
i ) ∈R p. We have derived p features for each light curve.

Truncate the training light curves to match the length of test light curves and red-
erive features. Denote these feature vectors by y1, . . . ,yn. Here yi = (y1

i , . . . ,y
p
i ). We

model the relationship between a truncated feature y j
i from light curve i and the

feature vector from the well sampled version of light curve i, xi, as,

y j
i = g j(xi)+ ε j,i (2)
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The ε j,i are assumed to be independent normal, mean 0, variance σ2
j . g j is arbitrary.

Using {(xi,y
j
i )}n

i=1 estimate g j. Denote this estimate ĝ j. We use Random Forests
regression to compute ĝ j. We now estimate p(y|x) according to our model.

p̂(y|x) = ∏
p
j=1 p̂(y j|x) (3)

= ∏
p
j=1 φ

(
y j−ĝ j(x)

σ̂ j

)
(4)

φ denotes the standard normal density. Plugging into (1) we obtain,

p̂(z|y) =
1
n ∑

n
i=1 p̂(z|xi)p̂(y|xi)

p(y)
(5)

It is clear that for our problem denoisification involves many more steps and as-
sumptions than noisification. Much of this results from us not having a closed form
expression for p(y|x). As a result we must model this relationship using the train-
ing data. Predicting a vector response is inherently challenging so we made the
independence assumption in (2) to turn the problem into predicting several univari-
ate responses. Even then, estimating p(y j|x) requires a non parametric regression
method.

3 Data and Application of Methods

We study the performance of noisification and denoisification by applying them to
the two data sets outlined in Table 1. The simulated data offers a highly controlled
environment for examining our methods. The light curves here were sampled 0–2
times per night using a jittered sampling model. There are no incorrectly labeled
curves and all light curves in the training set have exactly 200 flux measurements.
OGLE provides a more realistic setting that might be encountered when noisifica-
tion and denoisification are applied to classify light curves of variable quality. We
note that some of the light curves in the OGLE training set do not meet our definition
of well sampled light curves (≥ 200 flux measurements). The shortest light curve
in OGLE training has 131 flux measurements. Over three-fourths of the 358 OGLE
training light curves have more than 200 flux measurements, so the well sampled
training – poorly sampled test dichotomy is present here.

After splitting each data set into training and test, we downsample the test set
to mimic poorly sampled curves. This process is accomplished by taking the test
light curves and truncating them at 10,20, . . . ,100 flux measurements, starting from
the first flux measurement in each curve. We now have 10 test sets, each containing
poorly sampled light curves of different quality. Noisification and denoisification are
applied to each of these 10 test sets. Additionally we compare the two methods to the
naive approach of training a classifier on the training set and applying it unmodified
to the test data.
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Table 1 Data set characteristics

Survey Source Classesa F / LCb Train Size Test Size

Simulated RR Lyrae, Cepheid, β Persei, β Lyrae, Mira 200-200 500 500
OGLEc RR Lyrae DM, Multiple Mode Cepheid, β Persei,

β Lyrae, W Ursae Majoris
261-474 358 165

a For simulated data set, class prototypes were modeled on these source classes.
b F / LC is the first and third quartiles of number of flux measurements per light curve for training
c Data from [8]

4 Results

The left panels of Figs. 2 and 3 show the performance of noisification and denoisifi-
cation on the simulated and OGLE data sets respectively. Both methods improve on
the naive approach. As expected, the benefits of noisification and denoisification are
most apparent for very poorly sampled curves. Once test light curves have 60 - 70
flux measurements, modifying the classifier does not deliver much performance im-
provement. Noisification (blue-plus) outperforms denoisification (orange-triangles)
in these examples. This may be due to the assumptions made in implementing the
denoisification process. The ease of implementing noisification and its overall good
performance make it quite attractive relative to denoisification at this point. The er-
ror rates for the simulated data (left panel Fig. 2) decrease more smoothly than error
rates for OGLE (left panel Fig. 3). We suspect this is due to the highly controlled
setting in the simulated data. Light curves in OGLE often have large gaps meaning
a set of 40 flux measurements may contain 30 flux measurements taken over two
months and then 10 more flux measurements taken a year later.

As mentioned in Sect. 2.1, noisification requires constructing a different classifier
for every set of light curves with a different number of flux measurements. The right
panels of Figs. 2 and 3 explore how necessary this is. Here the noisified classifiers
constructed for 10, 50, and 100 point test light curves are fixed and applied to each of
the 10 test sets. The 50-point and 100-point noisified classifiers perform well across
a wide range of flux measurements (30 - 100 flux measurement test sets) in both
the simulated and OGLE data. For these data sets, noisified classifiers do not appear
sensitive to small changes in the number of flux measurements per light curve. In
other settings where this holds, computational savings could be acheived by noisi-
fying the training set to several number of flux measurements per curve. Then new
poorly sampled light curves could be classified using the noisified classifier that had
the closest number of flux measurements per curve.

Figure 4 provides insight into how noisification is affecting classifier construc-
tion. The left panel contains density estimates of source frequency for the unmodi-
fied training and 40 flux measurement test sets from the simulated data. We see that
these densities are quite different. The modes (bumps) in the training density re-
sult from frequency clustering by class. A classifier constructed on the unmodified
training data will use the modes in frequency to separate the classes even though
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Fig. 2 Results for the simulated data. The left panel compares noisification, denoisification, and
naive approaches to classifying poorly sampled test light curves. The right panel explores how
robust noisified classifiers are to changes in the number of flux measurements in the test set.
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Fig. 3 Results for the OGLE survey. The left panel compares noisification, denoisification, and
naive approaches to classifying poorly sampled test light curves. The right panel explores how
robust noisified classifiers are to changes in the number of flux measurements in the test set.

the density of frequency in the test data has very different properties. In the right
panel, the training data has been noisified. Now the frequency densities are closer. A
classifier constructed on the noisified training data will capture the class-frequency
relationship as it exists in the test set.

5 Conclusions

Noisification and denoisification improve classifier performance when using well
sampled light curves to classify poorly sampled ones. While noisification is simpler
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Fig. 4 The left panel displays the density of frequncy for training (blue-dash) and 40 flux test
(orange-solid) from the simulated data. The right panel compares the density frequency in the test
data to density of frequency in the training after noisifying.

to implement and gave better performance in this study, we believe there are reasons
to continue studying the denoisification strategy. For one, an implementation of de-
noisification that used fewer, or more science-based, assumptions on p(y|x) might
improve performance. Second, denoisfication can make use of unlabeled training
data in the estimation of the integral in (1), providing a potential performance boost
not available to noisification. Finally, with denoisification we only construct one
classifier which can be re-used on any new test observation.

Greater understanding of noisification and denoisification will come from apply-
ing the methods to more data sets. In future work we plan to study light curves from
the Hipparcos and ASAS surveys. While we have only studied noisification and
denoisification in the context of poorly sampled light curves, both strategies could
in principle be used to overcome other systematic differences between training and
test sets such as noise in flux measurements, censoring of flux measurements, and
varying cadences. Investigation of these issues will aid in construction of accurate
classifiers which must be trained and tested on different surveys.
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