
Time series analysis

Suzanne Aigrain
University of Oxford

GREAT summer school on astrostatistics and data mining
La Palma −  May/June 2011



Philosophy

• Astronomy = state of the art (sometimes)

• highly sensitive instruments, huge datasets

• exciting science



Philosophy

• Astronomy = state of the art (sometimes)

• highly sensitive instruments, huge datasets

• exciting science

• Astronomers = dinosaurs (often)

• no formal statistics training

• often use archaic or inappropriate methods 



Philosophy

• Astronomy = state of the art (sometimes)

• highly sensitive instruments, huge datasets

• exciting science

• Astronomers = dinosaurs (often)

• no formal statistics training

• often use archaic or inappropriate methods 

• No-one dies if we get it wrong



Philosophy

• Astronomy = state of the art (sometimes)

• highly sensitive instruments, huge datasets

• exciting science

• Astronomers = dinosaurs (often)

• no formal statistics training

• often use archaic or inappropriate methods 

• No-one dies if we get it wrong

• In these lectures

• recap basic/common concepts 

• cautionary notes on usage/implementation

• pointers to some interesting methods not commonly used 
in astrophysics

• outside my comfort zone!



Textbooks

• Bayesian spectrum analyis and parameter estimation, Bretthorst, Springer, 1988
bayes.wustl.edu/glb/book.pdf 

• Introduction to time series and forecasting, Brockwell & Davis, Springer, 2002 (2nd edition)

• Time series analysis and its applications, Shumway & Stoffer, Springer, 2006 (2nd edition)

• Pattern recognition & machine learning, Bishop, Springer, 2006

• Gaussian processes for machine learning, Rasmussen & Williams, MIT, 2006
www.gaussianprocess.org/gpml/chapters/RW.pdf 

• For additional reference material, data and source code see 
http://camd08.ast.cam.ac.uk/Greatwiki/GreatStats11/TSA
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• A time series is an ordered sequence of observations of one or more variables

• Uncertainty on time of observations usually (but not always) extremely well known (or at 
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• Uncertainty on time of observations usually (but not always) extremely well known (or at 
least much better than dependent variables)

• Interval between consecutive observations (time sampling) may be constant (regular 
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• Causality  implies autocorrelation in time-series.

• What are we trying to do?

• Detect / extract signal buried in noise

• Learn about underlying physical processes

• Predict observations 

• Make decisions about what to do next
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• yt = f(t, θ) + εt

• f ≡ model function

• θ ≡ parameters
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• εt ≡ typically IID noise

• spectral analysis   

• f(t, {a}, ω) = a1 sin(ωt) + a2 cos(ωt)

• ARMA-type models

• yn = φT yprev + θT εprev + εn

• specific covariance properties

• can be quasi-periodic

• Gaussian Processes

• f ~ GP(m, k)   or     y ~ N(m, K)

• m(t, θ) ≡ mean function

• Kij = k(ti, tj) + δij β

• k ≡ covariance function / kernel

• δij β ≡ white noise term

• State-space models

• yi = hT xi + εi                     (i = 1, ..., N)

• xij = gjT xj,prev + wij       (j = 1, ..., M)

• x ≡ state of system

• wi ≡ process noise, typically IID

D. Hogg’s lectures



Some basic concepts



where we have represented the observations in vector notation: x = (x1, . . . , xN)T

(the symbol T denotes the transpose operator), and the covariance matrix K has
elements

Ki j = σ
2 exp

�
−(ti − t j)2/2l2

�
.

In our example, σ = 1 and l = 2.

1.4 Double sine

The double sine process used in the lectures is defined by

xt =

2�

i=1

ai sin
�
2πt
Pi
+ φi

�
.

In our example, a1 = 1, a2 = 0.7, P1 = 17.1, P2 = 22.5, φ1 = 0 and φ2 = 1.3.

2 Using ACFs

2.1 Variance, mean, covariance and stationarity

Let x(t) represent an observation of a process X at time t.
The variance of X is

var [X] (t) ≡ E
�
x2(t)
�
,

where E [k] represents the expectation of the quantity k.
We restrict ourselves to time-series with finite variance for all t.
The mean function of X is

µX(t) = E [x(t)]

and the covariance function of X is

γX(t�, t) = cov [xt� , xt] = E
��

xt� − µX(t�)
� {xt − µX(t)}�

for all t and t�.
X is (weakly) stationary if µX(t) is independent of t, and γX(t+τ, t) is independent
of t for all τ.
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2 Using ACFs

2.1 Variance, mean, covariance and stationarity

Let x(t) represent an observation of a process X at time t.
The variance of X is
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�
,

where E [k] represents the expectation of the quantity k.
We restrict ourselves to time-series with finite variance for all t.
The mean function of X is

µX(t) = E [x(t)]

and the covariance function of X is

γX(t�, t) = cov [xt� , xt] = E
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X is (weakly) stationary if µX(t) is independent of t, and γX(t+τ, t) is independent
of t for all τ.

2Difference signals with long-term trends to achieve stationarity: yt = xt - xt−1. 



Autocovariance and autocorrelation functions
2.2 Autcovariance and autocorrelation

If X is stationary, the autocovariance function (ACV) of X at lag τ is

γX(τ) = cov [X(t + τ), X(t)] ,

where cov
�
x, y
�

denotes the covariance of two random variables x and y, and the
autocorrelation function (ACF) of X at lag τ is

ρX(τ) =
γX(τ)
γX(0)

.

2.3 Sample mean, ACV and ACF

Let x = (x1, . . . , xN)T represent a set of N observations of a process X. The sample
mean of x is

x̄ =
1
N

N�

i=1

xi,

the sample autocovariance function of x is

γ̂h =
1
N

N−|h|�

t=1

(xt+|h| − x̄)(xt − x̄)

and the sample autocorrelation function of x is

ρ̂h =
γ̂h

γ̂0
.

Both γ̂h and ρ̂h are defined for integer lags h, over the interval −N < h < N.

2.4 Distribution of the sample ACF

For large N, the sample ACF at non-zero lag is approximately normally distributed:

ρ̂ ∼ N
�
ρ,N−1W

�
,

3
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Notes on using the ACF

• Sample ACF becomes unreliable as h → N

• Stick to h ≤ N/4

• lags, acf, lines, axis = pylab.acorr(a, maxlags = N/4)

• Testing the IID hypothesis

• For non-zero lag, ACF of IID noise is N(0, N−1)

• 95% confidence interval: ± 1.96 N−1/2

• if > 2 of the first 40 sample ACF values lie outside these bounds, reject IID hypothesis
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Simple examples 1: ACF
(see script examples_1.py)























Exercise 1: Total solar irradiance 
(see dataset sorce_TSI_20110505.dat.gz)





solar minimum

solar maximum



plage/faculae

sunspot groups

solar minimum

solar maximum



plage/faculae

sunspot groups

some hints of quasi-periodic behaviour
on ~month and ~10 year timescales

solar minimum

solar maximum





activity cycle (hint)



activity cycle (hint)

+/− N/4





solar rotation period?





removes activity cycle





solar rotation period



solar rotation period

plage / faculae



Spectral analysis

Much of this section follows Bretthorst (1988).



General linear basis model

• yi = f(ti) + εi where 

• i = 0, ..., N−1, N = number of data points

• f(t) = Σj aj gj(t,ω)

• j = 0, ..., M−1, M = number of basis functions

• a = basis function weight(s) or amplitude(s)

• ω non-linear parameter(s)

• εi ~ N(0, σi2)

• σi2 = noise variance associated with data point i

• for simplicity assume σi = σ here
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• Likelihood L(ω,a,σ) = P(ω,a,σ|D,I) ∝ Πi σ−1 exp{−[yi − f(ti)]2 / 2σ2}

• D = data, I = prior information

• Marginalise over a, σ: L(ω) ∝ ∫da ∫dσ L(ω,a,σ) P(a|I) P(σ|I)

• Uninformative priors ~ setting parameters to maximum likelihood value

• Much of this can be done analytically

• Scan through nonlinear parameter(s) ω, estimate P(ω|D,I) ∝ L(ω) P(ω|I)

• grid search, sampling approach, ...

• Compare model families (different M and/or g) using posterior odds ratio 

• O = P(fj|D,I) / P(fk|D,I) = P(fj|I) P(D|fj,I) / [P(fk|I) P(D|fk|I)]



Single sinusoidal oscillation plus noise

• Work with δyi = yi − Σi yi  / N

• f(ti) = [a1 cos(ωti) + a2 sin(ωti)]



Single sinusoidal oscillation plus IID noise

• Work with δyi = yi − Σi yi  / N

• f(ti) = [a1 cos(ωti) + a2 sin(ωti)]

• Assume regular sampling (δt = 1)

• Basis functions are almost orthogonal

• Σi f2(ti) ≈ N [(a1)2 + (a2)2] / 2 



Single sinusoidal oscillation plus IID noise

• Work with δyi = yi − Σi yi  / N

• f(ti) = [a1 cos(ωti) + a2 sin(ωti)]

• Assume regular sampling, ignore departure from orthogonality 

• L(ω,a,σ) ∝ σ−N exp(−NQ/2σ2) where

• Q = Ŷ − 2 [a1 R(ω) + a2 I(ω)] / N + [(a1)2 + (a2)2] / 2

• Ŷ = Σi (yi)2 / N

• R(ω) = Σi yi cos(ωti)

• I(ω) = Σi yi sin(ωti)



Single sinusoidal oscillation plus IID noise

• Work with δyi = yi − Σi yi  / N

• f(ti) = [a1 cos(ωti) + a2 sin(ωti)]

• Assume regular sampling 

• L(ω,a,σ) ∝ σ−N exp(−NQ/2σ2) where

• Q = Ŷ − 2 [a1 R(ω) + a2 I(ω)] / N + [(a1)2 + (a2)2] / 2

• Marginalise out a 

• Appropriate uninformative prior for amplitude is infinite-width Gaussian

• Result is the same as setting a to maximum likelihood values

• a1,ML =  2 R(ω) / N

• a2,ML =  2 I(ω) / N

• L(ω,σ) ∝ σ2−N exp(− NŶ/2σ2) × exp{[R(ω)2 + I(ω)2] / Nσ2} 



Single sinusoidal oscillation plus IID noise

• f(ti) = [a1 cos(ωti) + a2 sin(ωti)]

• Work with δyi = yi − Σi yi  / N

• L(ω,a,σ) ∝ σ−N exp(−NQ/2σ2) where

• Q = Ŷ − 2 [a1 R(ω) + a2 I(ω)] / N + [(a1)2 + (a2)2] / 2

• Marginalise out a 

• Marginalise out σ

• Appropriate uninformative prior for scale factor is Jeffrey’s prior ∝ 1/σ

• L(ω) ∝ {1 − 2[R(ω)2 + I(ω)2] / NŶ}(2−N)/2



Relation to the discrete Fourier transform
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• Discrete Fourier transform (DFT)

• yj = Σk xk exp(−2πijk/N)                    (k = 0, ..., N −1)

• Inverse DFT (IDFT)

• xk = [Σj yj exp(2πijk/N)] / N               (n = 0, ..., N −1)

• DFT power spectrum |xk|2

• ωk = 2πk/Nδt, tj = jδt

• |xk|2 = [R(ωk)2 + I(ωk)2] / N2 ≡ N C(ωk)

• L(ω) ∝ {1 − 2[R(ω)2 + I(ω)2] / NŶ}(2−N)/2

• Define C(ω) such that C(ωk) ≡ N |xk|2 = [R(ωk)2 + I(ωk)2] / N

• L(ω) ∝ {1 − 2C(ω) / Ŷ}(2−N)/2 

• L(ω) is much more sharply peaked than the DFT

Relation to the discrete Fourier transform



Bretthorst (1988)



Using the DFT for the “single sinusoid” problem



• DFT is applicable to the single sinusoid plus IID noise problem when

• the time-sampling is regular

• N is large, ω >> 2πN/δt (orthogonality)

• the signal is stationary (a, σ constant)

• the noise is IID (noise = anything that the model can’t reproduce)
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• DFT is applicable to the single sinusoid plus IID noise problem when

• the time-sampling is regular

• N is large, ω >> 2πN/δt (orthogonality)

• the signal is stationary (a, σ constant)

• the noise is IID (noise = anything that the model can’t reproduce)

• Can also use DFT for multiple oscillatory signals if 

• δω >> 2πN/δt 

• must use multiple sinusoid basis to estimate residual noise variance

• OK to ignore departure from orthogonality if the sampling is almost regular

• Schuster periodogram: C(ω) = [R(ω)2 + I(ω)2] / N (FFT algorithm no longer applies)

Using the DFT for the “single sinusoid” problem



• Data in array y

• x = numpy.fft.rfft(y)       is the DFT of y (“r” is for “real”)1

• C = abs(x)**2/N                    is the power spectrum of y estimated at the frequencies...

• freq = numpy.arange(N/2+1)/float(N*dt)

DFT with Python 

1rfft computes the DFT at positive frequencies only. 
For real input the DFT is Hermitian, so there is no extra information in the negative frequency part of the DFT



• Data in array y

• x = numpy.fft.rfft(y)       is the DFT of y (“r” is for “real”)1

• C = abs(x)**2/N                    is the power spectrum of y estimated at the frequencies...

• freq = numpy.arange(N/2+1)/float(N*dt)

• If yi = sin(ωti): 

• IDFT is x(ω) = i δ(ω) / 2, DFT power spectrum is C(ω) = δ(ω) / 4 

• In the literature, power spectrum is often “normalised” by multiplying by a factor 4.

• This suggests a one-to-one correspondence between peak amplitude in the power 
spectrum and oscillation amplitude, which is not necessarily true.

DFT with Python 

1rfft computes the DFT at positive frequencies only. 
For real input the DFT is Hermitian, so there is no extra information in the negative frequency part of the DFT



Single sine − detectability and uncertainties

Bretthorst (1988).



Single sine − detectability and uncertainties

• L(ω) ∝ {1 − 2[R(ω)2 + I(ω)2] / NŶ}(2−N)/2  

• or L(ω,σ) ∝ σ2−N exp(−NŶ/2σ2) × exp{[R(ω)2 + I(ω)2] / Nσ2} if σ known a priori

Bretthorst (1988).



Single sine − detectability and uncertainties

• L(ω) ∝ {1 − 2[R(ω)2 + I(ω)2] / NŶ}(2−N)/2  

• or L(ω,σ) ∝ σ2−N exp(−NŶ/2σ2) × exp{[R(ω)2 + I(ω)2] / Nσ2} if σ known a priori

• Detectability of individual signals 
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• L(ω) ∝ {1 − 2[R(ω)2 + I(ω)2] / NŶ}(2−N)/2  

• or L(ω,σ) ∝ σ2−N exp(−NŶ/2σ2) × exp{[R(ω)2 + I(ω)2] / Nσ2} if σ known a priori

• Detectability of individual signals 

• C(ωmax) ≈ N |a|2/4

• L(ωmax) ∝ exp(|N|a|2/4σ2)

• Uncertainty on ω

• derived from shape of peak in L(ω)

• σω = σ |a|−1 (48/N3)1/2

• Uncertainty on a: (σ|a|)2 = <a1a2> − <a1><a2> = σ2 /N

• Estimated noise variance: <σ2> = Σi [ωmax yi  − f(ωmax,<a>,ti)]2 / (N−4) 

Bretthorst (1988).
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Violating the assumptions

• Bayesian approach ensures that if our assumptions are wrong, our conclusions are not 
misleading

• For example (see Bretthorst 1989 for details),

• Non-stationary noise

• Non-white noise

• Variable amplitude of signal

• ...

• All of these lead to increased estimates of the parameter uncertainties, because even the best 
model doesn’t match the data well

• It is particularly important to treat measurement uncertainties with caution 

• Often we don’t know them as well as we think we do
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Aliasing, harmonics and beating

• Beating

• modulation of envelope when signal at two close frequencies is present

• fbeat = |f1 − f2|

• Aliasing

• signal at f > fNyquist appears at falias = |f − k fNyquist|

• k is integer such that 0 < f ≤ fNyquist

• Harmonics

• the harmonics of fundamental frequency f are 2f, 3f, ...

• non-sinusoidal (non-harmonic) periodic signals decompose into multiple harmonics

• In Bayesian PSD, only main frequency matters

• side lobes, aliases and harmonics heavily suppressed
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Beyond sinusoids

• The analysis outlined so far applies to any linear basis model

• E.g. multiple sinusoids

• Can add extra w’s to represent decay / growth / other nonlinear parameters

• growing / decaying signals

• keplerian orbits

• ...



Simple examples 2: spectral analysis (regular)
(see script examples_2.py)



Single sinusoid + noise



Single sinusoid + noise

P(95): 0.99
Estimated angular frequency: 0.3001 +/- 0.0006

Estimated amplitude: 0.98 +/- 0.05
Estimated noise st.dev: 1.03 +/- 0.06



Single sinusoid + noise



Noise only



Noise only

P(95): 0.27
Estimated angular frequency: 0.028 +/- 0.002

Estimated amplitude: 0.25 +/- 0.05
Estimated noise st.dev: 1.02 +/- 0.06



Double sinusoid + noise



Double sinusoid + noise

1st pass: P(95): 0.978
ω: 0.2993 +/- 0.0007

|a|: 0.93 +/- 0.05
σ: 1.11 +/- 0.06

2nd pass: P(95): 0.996
ω: 0.3107 +/- 0.0007

|a|: 0.80 +/- 0.04
σ: 0.95 +/- 0.06



Simple examples 3 - exploratory spectral analysis



Aliasing / harmonics example
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What if the signal isn’t stationary?

peak is spread out
→ harder to interpret

peak is split 
→ easy to confuse with beating case

gradual evolution of 
amplitude and phase

gradual evolution of 
time scale

See: 
• Empirical mode decomposition & the Hilbert-Huang transform
• Generalised state space models & quasi-periodic oscillations



TSI − power spectrum

solar rotation period

Fill missing values with linear interpolation 
(ok if there are few)



TSI − power density spectrum

~ aτ / [1 + (2πf τ)2]

white noise



Spectral density

see power at solar rotation period and first 
3 harmonics

1st harmonic is split but not fundamental
→ signature of active region evolution

differential rotation causes splitting of 
fundamental and harmonics

a more careful analysis would in fact show 
evidence for both active region evolution 
and differential rotation

 spectral density ≡ power spectrum of ACF
smoothed spectral density ≡ spectral plot



Exercise 2: Spectral analysis of Kepler light curve
(see dataset Kepler_Q1_mod24_out4.mat)

Pick the 19th light curve: multi-periodic pulsator
Rebin to  δt = 0.1 to  avoid overflow











What about irregularly sampled data?
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• Not only simplifies likelihood but ensures uncorrelated aj’s

• General linear basis model: f(t) = Σj aj gj(t,ω)                   (j = 1, ..., M)

• Rewrite as f(t) = Σk bk hk(t) such that Σi hj(ti) hk(ti) = δjk

• Form matrix Gjk = Σi gj(ti) gk(ti) 

• Define ejk as jth component of its kth normalised eigenvector: Σk Gjk ekl lk / λl elj

• Orthogonality achieved if hk(t) = Σkj ekj gj(t) / (λk)1/2 

• Then aj = Σk [bk ekj /(λj)1/2]
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• Rewrite as f(t) = Σk bk hk(t) such that Σi hj(ti) hk(ti) = δjk

• Single sinusoid in regularly sampled data is only approximately orthogonal

• hk = (c1)−1/2 cos(ωt) + (c2)−1/2 sin(ωt) where c = (N/2) ± sin(Nω) / 2 sin(ω)

• C’(ω) = [R(ω)2 / c1 + I(ω)2 / c2] / N 
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Making the basis orthonormal

• Not only simplifies likelihood but ensures uncorrelated aj’s

• General linear basis model: f(t) = Σj aj gj(t,ω)                   (j = 1, ..., M)

• Rewrite as f(t) = Σk bk hk(t) such that Σi hj(ti) hk(ti) = δjk

• Single sinusoid in regularly sampled data

• C’(ω) = [R(ω)2 / c1 + I(ω)2 / c2] / N 

• Generally, estimate numerically

• eigval, eigvec = numpy.linalg.eig(a)

• Rest of analysis proceeds as before

• Obtain L(ω) ∝ [1 − (Σk ĥk2 / NŶ)](m−N)/2 where ĥk = Σi δyi hj(ti)

• or L(ωσ) ∝ σm−N exp(−NŶ/2σ2) × exp(Σk ĥk2 / 2σ2) if σ is known
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The Lomb-Scargle periodogram

• Scargle (1972), Horne & Baliunas (1989)

• Bayesian spectral analysis for:

• single sinusoid + white noise model

• mildly irregular sampling

• Beware

• noise is assumed known, white, and constant over dataset

• if the sampling is strongly irregular

• trick to achieve orthogonality breaks down

• tests against null hypothesis (“significance”, “false alarm probability”) break down
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The generalised least-squares periodogram

• Schuster & .... [though widely used long before]

• Maximum likelihood for 

• single sinusoid + offset + white noise

• irregular time sampling

• variable measurement uncertainties

• Beware

• noise is assumed known and white

• no recipe for testing agains null hypothesis provided
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In practice...

• Use Lomb-Scargle / GLS periodogram as exploratory tool

• Final analysis should always be fully Bayesian

• Break down into linear / nonlinear parts

• Apply principles described above for linear part

• (Clever) sampling methods needed for nonlinear parameters



Exercise 3: HARPS RV data of HD 104067
(see dataset HD104067.dat)





Analysing the HARPS data of HD104067

• Fairly obvious periodic modulation

• Try it, module gls.py

• Some hint of trend in residuals

• Questions: 

• If the modulation is due to a planet, what are its parameters?

• Keplerian orbit: module orbit.py

• Can we say much about any other signal in the data?

• This data is not published, is it because the HARPS team are waiting for a 2nd planet to 
become significant?

• How realistic are the measurement uncertainties?

• Measurement uncertainties for RVs are notoriously hard to measure

• Particularly sensitive to stellar rotation rate (broad lines) and signal-to-noise of 
spectrum (weather)



Stochastic processes: ARMA models



Auto-regressive models

2.4 Distribution of the sample ACF

For large n, the sample ACF is approximately normally distributed:

ρ̂ � N(ρ, n−1W)

where ρ = (ρ(1), . . . , ρ(hmax))T and the elements of the covariance matrix W are
given by

wi j =

∞�

k=1

��
ρ(k + i) + ρ(k − i) − 2ρ(i)ρ(k)

� × �ρ(k + j) + ρ(k − j) − 2ρ( j)ρ(k)
��
.

3 ARMA models

3.1 AR models

The AR(p) process is defined by

xt = c +
p�

i=1

φixt−1 + �t

where � = N(0,σ2
� I). This process is stationary if the roots of the polynomial

zp −
p�

i=1

φizp−1

lie inside the unit circle.

3



Auto-regressive models

http://en.wikipedia.org/wiki/Autoregressive_model



ACF and spectral density of AR(p) processes

3.1.1 The AR(1) process

The AR(1) process xt = c + φxt−1 + �t has ACV

γ(h) =
σ2
�

1 − φ2φ
|h|

which decays exponentially with decay constant τ = −1 ln φ.

Provided τ � 1, i.e. the sampling interval is much shorter than the decay time, we

can treat the ACF as continuous. The spectral density is then

S ( f ) ∝
� ∞

−∞
γ(h)e−2πi f dh ∝ τ

1 + (2π f τ)2

3.1.2 ACF and spectral density of AR processes

The ACF of an AR(p) process has the form

ρ(h) =
p�

k=1

aky−|h|k

where the yk are the roots of the polynomial zp −�p
i=1 φizp−1.

The spectral density of an AR(p) process is

S ( f ) ∝ 1
|1 −�p

k=1 φke−2πik f |2

4

http://en.wikipedia.org/wiki/Autoregressive_model



Spectral density of an AR(1) process

3.1.1 The AR(1) process

The AR(1) process xt = c + φxt−1 + �t has ACV

γn =
σ2
�

1 − φ2φ
|n|

which decays exponentially with decay constant τ = −1 ln φ.

Provided τ � 1, i.e. the sampling interval is much shorter than the decay time, we

can treat the ACF as continuous. The spectral density is then

S ( f ) ∝
� ∞

−∞
γ(t)e−2πi f dt ∝ τ

1 + (2π f τ)2
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Spectral density of an AR(1) process

3.1.1 The AR(1) process

The AR(1) process xt = c + φxt−1 + �t has ACV

γn =
σ2
�

1 − φ2φ
|n|

which decays exponentially with decay constant τ = −1 ln φ.

Provided τ � 1, i.e. the sampling interval is much shorter than the decay time, we

can treat the ACF as continuous. The spectral density is then

S ( f ) ∝
� ∞

−∞
γ(t)e−2πi f dt ∝ τ

1 + (2π f τ)2

4

Recall TSI...



• Fit the data:

• model each Xt as a linear combination of the previous p observations

• get n−p simultaneous equations

• But

• complicated for p>1

• how do you chose p anyway?

Finding the coefficients of an AR(p) model



Fitting the ACV: Yule-Walker equations

• In matrix form, for m>1                                                  or

• This is well posed and the matrix R is always invertible.

=     if m=0, 0 otherwise

so that

2.5 Putting it All Together

Rewriting all the equations together yields

r1 = φ1ro + φ2r1 + φ3r2 + · · · + φp−1rp−2 + φprp−1
r2 = φ1r1 + φ2ro + φ3r1 + · · · + φp−1rp−3 + φprp−2

...
rp−1 = φ1rp−2 + φ2rp−3 + φ3rp−4 + · · · + φp−1ro + φpr1
rp = φ1rp−1 + φ2rp−2 + φ3rp−3 + · · · + φp−1r1 + φpro

which can also be written as




r1
r2
...

rp−1
rp





=





ro r1 r2 · · · rp−2 rp−1
r1 ro r1 · · · rp−3 rp−2

...
...

rp−2 rp−3 rp−4 · · · ro r1
rp−1 rp−2 rp−3 · · · r1 ro









φ1
φ2
...

φp−1
φp





.

Recalling that ro = 1, the above equation is also




r1
r2
...

rp−1
rp





� �� �
r

=





1 r1 r2 · · · rp−2 rp−1
r1 1 r1 · · · rp−3 rp−2

...
...

rp−2 rp−3 rp−4 · · · 1 r1
rp−1 rp−2 rp−3 · · · r1 1





� �� �
R





φ1
φ2
...

φp−1
φp





� �� �
Φ

or succinctly
RΦ = r. (2)

Note that this is a well-posed system (with a square coefficients matrix R), i.e., with
the same number of constraints (equations, R’s rows) as unknowns (the elements
φj of the unknown vector Φ). Further, R is full-rank and symmetric, so that
invertability is guaranteed,

Φ̂ = R−1r.

3 The Yule-Walker Equations and the Partial Autocorre-
lation Function

Equation 2 provides a convenient recursion for computing the pacf. The first step
is to compute the acf up to a reasonable cutoff, say p � N/4. Next, let r(i) denote
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But what about choosing p?

• Given the sample ACF up to nmax ≤ n/4

• Compute the sample partial ACF (PACF)

• Estimate r and R in the YW equations

• keep the first k rows only

• solve for the AR coefficients φ

• PACF(k) = φk

• PACF(k) measures the amount of correlation not accounted for by an AR(k−−1) model

• The PACF of an AR(p) model is (indistinguishable from) 0 for lags > p



Moving average & ARMA models

3.1.1 ACF of an AR process

The ACF of an AR(p) process has the form

ρ(h) =
p�

k=1

aky−|h|k

where the yk are the roots of the polynomial zp −�p
i=1 φizp−1.

The spectral density of an AR(p) process is

S ( f ) ∝ 1
|1 −�p

k=1 φke−2πik f |2

3.1.2 The AR(1) process

The AR(1) process xt = c + φxt−1 + �t has ACV

γ(h) =
σ2
�

1 − φ2φ
|h|

which decays exponentially with decay constant τ = −1 ln φ.

Provided τ � 1, i.e. the sampling interval is much shorter than the decay time, we

can treat the ACF as continuous. The spectral density is then

S ( f ) ∝
� ∞

−∞
γ(h)e−2πi f dh ∝ τ

1 + (2π f τ)2

3.2 MA processes

The MA(q) process is defined by xt = µ +
�q

i=1 θi�t−1 + �t where � = N(0,σ2
� I).

The ACF of an MA(p) process cuts off after lag > q.

The PACF of an MA decays exponentially, with or without oscillations, much like

the ACF of an AR process.

3.3 ARMA processes

The ARMA(p, q) process is defined by xt =
�q

i=1 φixt−1 +
�p

i=1 θi�t−1 + �t where

� = N(0,σ2
� I).
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Before applying AN ARMA model...

• Plot xt vs t 

• Is there a trend?

• If yes, plots the first difference

• repeat d times until stationary

• Apply ARMA model to differenced data = ARIMA(p,d,q)

• Plot the spectral density

• Is there a significant peak (seasonality)?

• If so, compute the seasonally differenced data xt − xt−s

• Use a seasonal ARMA model

• relates xt to xt−si rather than to xt−i



• Plot ACF & PACF

• ACF gradually decays, PACF cuts of after p lags

• AR(p) model

• ACF cuts off after q lags, PACF gradually decays

• MA(q) model

• Both ACF and PACF decay gradually, starting after a few lags

• Mixed ARMA model

• Fit model coefficients 

• No python module to my knowledge, but they exist in R & Matlab.

• Test & compare models with different p, q

Box-Jenkins model selection



• The fitting of ARMA models relies largely on modelling the sample ACF.

• To estimate the goodness of fit, we need some knowledge of the distribution of the sample 
ACF. This is usually intractable, but...

Distribution of sample ACF

2.4 Distribution of the sample ACF

For large n, the sample ACF is approximately normally distributed:

ρ̂ � N(ρ, n−1W)

where ρ = (ρ(1), . . . , ρ(hmax))T and the elements of the covariance matrix W are
given by

wi j =

∞�

k=1

��
ρ(k + i) + ρ(k − i) − 2ρ(i)ρ(k)

� × �ρ(k + j) + ρ(k − j) − 2ρ( j)ρ(k)
��
.
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ARMA-like models in astrophysics

• ARMA models and relative are most widely used for prediction

• rarely what we need to do in astrophysics

• They do give us a framework for understanding stochastic processes

• They can be built into state-space models, providing a means to study quasi-periodic 
oscillations



A few things before we start

• All the documents, code and the PDF of yesterday’s lecture are on the wiki

• Use them to go back over anything that wizzed past a bit too fast yesterday...

• One code I haven’t supplied: full Bayes spectral analysis for irregular data.

• Today: newer methods, more conceptual, less math

• relevant papers and textbooks are available on the wiki if you want to go further

• Time for “exercises”

• getting ready for David Hogg’s model selection workshop 

• anything else you want to ask me about the 3 datasets and code I’ve supplied



Advertising

• IAU Syposium 285: New Horizons in Time Domain Astronomy, 19-23 September 2011, St 
Catherine College, Oxford

• http://www.physics.ox.ac.uk/IAUS285/

• talks in the morning, hands-on workshops in the afternoons

• SFTC graduate school “Exoplanets and their host stars”, 12-16 March 2012, St Anne’s 
College, Oxford

• http://www.physics.ex.ac.uk/EAHS12

• contact me for more information



Stochastic processes: Gaussian processes

Most plots in this section are from Rasmussen & Williams (2009).



Motivation

• Typically model time-series as yi = f(ti,θ) + εi where 

• f(t,θ) is a parametric model 

• εi is IID noise

• But 

• IID noise assumption almost never holds

• Process of interest may be stochastic

• May have additional information (housekeeping data) but not sure how to tie it in

• We would like to incorporate random functions (with certain properties) into our model

• Gaussian processes are probability distributions over random functions

• Generalisation of Bayesian linear regression to random functions (via kernel trick)



• Joint distribution of samples from a Gaussian process = multivariate Gaussian: N(m(t), K) 

•  m(t) is the mean function (can be parameteric

• K is the covariance matrix (must be positive semi-definite) 

• K is the Gram matrix of some covariance function k: Kij = k(ti, tj)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

1.1 A Pictorial Introduction to Bayesian Modelling 3
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.



• Prior distribution (no data)

• P(y❋|k,I) ~ N(0, K),               k(t,t’) = σd2 exp[−(t−t’)2 / 2l2]

• Posterior distribution is conditioned on data

Modelling data with a GP
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is �

f

f∗

�
∼ N

�
0,

�
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

��
. (2.18)

If there are n training points and n∗ test points then K(X, X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is �

f

f∗

�
∼ N

�
0,

�
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

��
. (2.18)

If there are n training points and n∗ test points then K(X, X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

Modelling data with a GP prior

• Prior distribution (no data)

• P(y❋|m,k,I) ~ N(0, K)

• Posterior distribution is conditioned on data

• P(y❋|m,k,D,I) ~ N(f❋,var[f❋]) where

• f❋ = k❋
T (K + σn2I)−1 y

• var[f❋] = k(t❋,t❋) − k❋
T (K + σn2I)−1 k❋

• k❋ = (k(t1,t❋), ..., k(tN,t❋))T.
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is �

f

f∗

�
∼ N

�
0,

�
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

��
. (2.18)

If there are n training points and n∗ test points then K(X, X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

Modelling data with a GP prior

• Prior distribution (no data)

• P(y❋|m,k,I) ~ N(0, K)

• Posterior distribution is conditioned on data

• P(y❋|y,m,k,I) ~ N(f❋,var[f❋]) where

• f❋ = k❋
T (K + σn2I)−1 y

• var[f❋] = k(t❋,t❋) − k❋
T (K + σn2I)−1 k❋

• k❋ = (k(t1,t❋), ..., k(tN,t❋))T.

• If m(t❋) ≠ 0, perform regression on residuals

• If observations are noise, add white noise 
variance to diagonal of K

• Parameters of mean and covariance functions 
and white noise variance are hyper-
parameters of the GP



Posterior mean and covariance

• P(y❋|m,k,I) is also multivariate Gaussian, with ≠ mean and covariance from prior

• Even if prior GP was stationary, posterior is not necessarily

• GPs can be used to model non-stationary data
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Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x�) for the same data for three different values of x�. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x∗ we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+1)-dimensional
distribution on the observations gives us the desired result. A graphical model
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the difference between two terms: the first term K(X∗, X∗) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y∗ by addingnoisy predictions

σ2
nI to the variance in the expression for cov(f∗).

The predictive distribution for the GP model gives more than just pointwisejoint predictions

errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X∗ denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definitionposterior process

of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b).

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integralmarginal likelihood



Impact of the hyper-parameters
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Figure 2.5: (a) Data is generated from a GP with hyperparameters (�, σf , σn) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale �, the signal variance σ2

f

and the noise variance σ2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (�,σf ,σn) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

• k(t,t’) = σd2 exp[−(t−t’)2 / 2l2]

• Top panel:

• data generated with (l,σd,σn) = (1,1,1) 

• posterior distribution for fixed l = 1

• Bottom panels: assumed other values of l.

• Upper panel has larger marginal likelihood 
P(y|m,k,D,I)

parameters = values of mean vector 
and covariance matrix
hyper-parameters = parameters of 
covariance and mean function



Fitting for the hyper-parameters

• Ideally: Use sampling techniques to 

• marginalise over the hyper-parameters we don’t care about

• measure the posterior distribution for those which are physically relevant

• expensive! Matrix inversion for each trial set of hyper-parameters

• Compromise: set some (or all) of them to their maximum likelihood values 

• find those using standard optimisation methods



Example: Mauna Kea CO2
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 119

1960 1970 1980 1990 2000 2010 2020
320

340

360

380

400

420

year

CO
2 c

on
ce

nt
ra

tio
n,

 p
pm

Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

long term trend
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

medium-term irregularities
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

medium-term irregularities
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot

(with wrap-around continuity between the edges). The labels on the contours are in

ppmv of CO2. The training period extends up to the dashed line. Note the slow

development: the height of the May peak may have started to recede, but the low in

October may currently (2005) be deepening further. The seasonal effects from three

particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con- noise terms

tribution and an independent component

k4(xp, xq) = θ2
9 exp

�
− (xp − xq)2

2θ2
10

�
+ θ2

11δpq, (5.18)

where θ9 is the magnitude of the correlated noise component, θ10 is its length-
scale and θ11 is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

The final covariance function is

k(x, x�) = k1(x, x�) + k2(x, x�) + k3(x, x�) + k4(x, x�), (5.19)

with hyperparameters θ = (θ1, . . . , θ11)�. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the parameter estimation

marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping rôles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X, θ) = −108.5.

noise

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,

ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

120 Model Selection and Adaptation of Hyperparameters

1960 1970 1980 1990 2000 2010 2020

320

340

360

380

400

CO
2 c

on
ce

nt
ra

tio
n,

 p
pm

year

−1

−0.5

0

0.5

1

CO
2 c

on
ce

nt
ra

tio
n,

 p
pm

J F M A M J J A S O N D

−3

−2

−1

0

1

2

3

CO
2 c

on
ce

nt
ra

tio
n,

 p
pm

month

1958
1970
2003

(a) (b)

Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

medium-term irregularities
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot

(with wrap-around continuity between the edges). The labels on the contours are in

ppmv of CO2. The training period extends up to the dashed line. Note the slow

development: the height of the May peak may have started to recede, but the low in

October may currently (2005) be deepening further. The seasonal effects from three

particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con- noise terms

tribution and an independent component

k4(xp, xq) = θ2
9 exp

�
− (xp − xq)2

2θ2
10

�
+ θ2

11δpq, (5.18)

where θ9 is the magnitude of the correlated noise component, θ10 is its length-
scale and θ11 is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

The final covariance function is

k(x, x�) = k1(x, x�) + k2(x, x�) + k3(x, x�) + k4(x, x�), (5.19)

with hyperparameters θ = (θ1, . . . , θ11)�. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the parameter estimation

marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping rôles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X, θ) = −108.5.

noise
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

medium-term irregularities
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

long term trend

Example: Mauna Kea CO2
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot

(with wrap-around continuity between the edges). The labels on the contours are in

ppmv of CO2. The training period extends up to the dashed line. Note the slow

development: the height of the May peak may have started to recede, but the low in

October may currently (2005) be deepening further. The seasonal effects from three

particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con- noise terms

tribution and an independent component

k4(xp, xq) = θ2
9 exp

�
− (xp − xq)2

2θ2
10

�
+ θ2

11δpq, (5.18)

where θ9 is the magnitude of the correlated noise component, θ10 is its length-
scale and θ11 is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

The final covariance function is

k(x, x�) = k1(x, x�) + k2(x, x�) + k3(x, x�) + k4(x, x�), (5.19)

with hyperparameters θ = (θ1, . . . , θ11)�. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the parameter estimation

marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping rôles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X, θ) = −108.5.

noise
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

medium-term irregularities
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.

quasi-periodic oscillation
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

long term trend
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-

tion of CO2 made between 1958 and the end of 2003, together with 95% predictive

confidence region for a Gaussian process regression model, 20 years into the future.

Rising trend and seasonal variations are clearly visible. Note also that the confidence

interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1

and characteristic length-scale θ2

k1(x, x�) = θ2
1 exp

�
− (x− x�)2

2θ2
2

�
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.
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Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot

(with wrap-around continuity between the edges). The labels on the contours are in

ppmv of CO2. The training period extends up to the dashed line. Note the slow

development: the height of the May peak may have started to recede, but the low in

October may currently (2005) be deepening further. The seasonal effects from three

particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con- noise terms

tribution and an independent component

k4(xp, xq) = θ2
9 exp

�
− (xp − xq)2

2θ2
10

�
+ θ2

11δpq, (5.18)

where θ9 is the magnitude of the correlated noise component, θ10 is its length-
scale and θ11 is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

The final covariance function is

k(x, x�) = k1(x, x�) + k2(x, x�) + k3(x, x�) + k4(x, x�), (5.19)

with hyperparameters θ = (θ1, . . . , θ11)�. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the parameter estimation

marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping rôles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X, θ) = −108.5.

amplitude

time scale
decay periodic term 

(fixed period)

multiple time-scales

white
correlated



Example: Mauna Kea CO2
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,

ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the

squared exponential contribution; superimposed is the medium term trend, full line,

right hand scale, predicted by the rational quadratic contribution; the vertical dash-

dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal

variation over the year for three different years. The concentration peaks in mid May

and has a low in the beginning of October. The seasonal variation is smooth, but

not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5

ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The

characteristic decay length of the periodic component is inferred to be 90 years, so

the seasonal trend changes rather slowly, as also suggested by the gradual progression

between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared

exponential component (using the product construction from section 4.2.4), to

allow a decay away from exact periodicity

k2(x, x�) = θ2
3 exp

�
− (x− x�)2

2θ2
4

− 2 sin
2
(π(x− x�))

θ2
5

�
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,

and θ5 the smoothness of the periodic component; the period has been fixed

to one (year). The seasonal component in the data is caused primarily by

different rates of CO2 uptake for plants depending on the season, and it is

probably reasonable to assume that this pattern may itself change slowly over

time, partially due to the elevation of the CO2 level itself; if this effect turns

out not to be relevant, then it can be effectively removed at the fitting stage by

allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term

irregularities is used, eq. (4.19)

k3(x, x�) = θ2
6

�
1 +

(x− x�)2

2θ8θ2
7

�−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-

rameter determining diffuseness of the length-scales, see the discussion on page

87. One could also have used a squared exponential form for this component,

but it turns out that the rational quadratic works better (gives higher marginal

likelihood), probably because it can accommodate several length-scales.



• Matern class of covariance functions

• Kc  = modified Bessel function, Γ(ν) = error function

• setting ν + 1/2 = p for integer p gives class of AR(p) processes

• can check if by computing spectral density, i.e. FT of covariance function

• Almost ANYTHING is a special case of GP

AR(p) processes as GPs

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

84 Covariance Functions

The SE kernel is infinitely divisible in that (k(r))t is a valid kernel for allinfinitely divisible

t > 0; the effect of raising k to the power of t is simply to rescale �.

We now digress briefly, to show that the squared exponential covariance
function can also be obtained by expanding the input x into a feature space
defined by Gaussian-shaped basis functions centered densely in x-space. Forinfinite network

construction for SE
covariance function

simplicity of exposition we consider scalar inputs with basis functions

φc(x) = exp
�
− (x− c)2

2�2
�
, (4.10)

where c denotes the centre of the basis function. From sections 2.1 and 2.2 we
recall that with a Gaussian prior on the weights w ∼ N (0,σ2

pI), this gives rise
to a GP with covariance function

k(xp, xq) = σ2
p

N�

c=1

φc(xp)φc(xq). (4.11)

Now, allowing an infinite number of basis functions centered everywhere on an
interval (and scaling down the variance of the prior on the weights with the
number of basis functions) we obtain the limit

lim
N→∞

σ2
p

N

N�

c=1

φc(xp)φc(xq) = σ2
p

� cmax

cmin

φc(xp)φc(xq)dc. (4.12)

Plugging in the Gaussian-shaped basis functions eq. (4.10) and letting the in-
tegration limits go to infinity we obtain

k(xp, xq) = σ2
p

� ∞

−∞
exp

�
− (xp − c)2

2�2
�
exp

�
− (xq − c)2

2�2
�
dc

=
√

π�σ2
p exp

�
− (xp − xq)2

2(
√

2�)2
�
,

(4.13)

which we recognize as a squared exponential covariance function with a
√

2
times longer length-scale. The derivation is adapted from MacKay [1998]. It
is straightforward to generalize this construction to multivariate x. See also
eq. (4.30) for a similar construction where the centres of the basis functions are
sampled from a Gaussian distribution; the constructions are equivalent when
the variance of this Gaussian tends to infinity.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given byMatérn class

kMatern(r) =
21−ν

Γ(ν)

�√2νr

�

�ν
Kν

�√2νr

�

�
, (4.14)

with positive parameters ν and �, where Kν is a modified Bessel function
[Abramowitz and Stegun, 1965, sec. 9.6]. This covariance function has a spectral
density

S(s) =
2DπD/2Γ(ν + D/2)(2ν)ν

Γ(ν)�2ν

�2ν

�2
+ 4π2s2

�−(ν+D/2)
(4.15)



Some cool things you can do



Some cool things you can do

• Multivariate time-series

• both input (what I have so far called “time”) and output (“y”) can be multi-dimensional

• an example of this will be shown tomorrow afternoon



Some cool things you can do

• Multivariate time-series

• both input (what I have so far called “time”) and output (“y”) can be multi-dimensional

• an example of this will be shown tomorrow afternoon

• Change-point detection

• detect sudden change of variance, or time-scale of variation, or any other discontinuity

• see paper by Garnet et al

• an example tomorrow also



Some cool things you can do

• Multivariate time-series

• both input (what I have so far called “time”) and output (“y”) can be multi-dimensional

• an example of this will be shown tomorrow afternoon

• Change-point detection

• detect sudden change of variance, or time-scale of variation, or any other discontinuity

• see paper by Garnet et al

• an example tomorrow also

• Decision making: when should I take my next observation



Some cool things you can do

• Multivariate time-series

• both input (what I have so far called “time”) and output (“y”) can be multi-dimensional

• an example of this will be shown tomorrow afternoon

• Change-point detection

• detect sudden change of variance, or time-scale of variation, or any other discontinuity

• see paper by Garnet et al

• an example tomorrow also

• Decision making: when should I take my next observation

• Use GPs to model the probability distributions you’re trying to estimate

• known as “Bayesian quadrature”

• allows you to chose where in the parameter space to take the next sample

• you can estimate multivariate probability distribution with very few samples



GPs - python packages

• infpy (GP library developped in a systems biology context) by John Reid

• http://sysbio.mrc-bsu.cam.ac.uk/group/index.php/Gaussian_processes_in_python

• tested, works ok, but no hyper-parameter marginalisation

• pyXGPR (GP regression and relational GPs) by Marion Newmann

• http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=19

• not tested

• GPAstro: GP regression library currently under development in Oxford

• basic GP regression in python

• fully Bayesian treatment of hyperparameters using python-wrapped C code (will also 
supply MATLab wrappers)

• optimized sampling methods



Some other things to try out



State space model

• state model: current state = combination of past states + process noise

• linear combination of past states: linear dynamic system

• observation model: current observation = function of current state + observation noise

• Kalman filter: current best estimate of system state = weighted average of past estimate and 
latest observation

• See most time series text books

• Gives rise to powerful class of algorithms for quasi-periodic oscillations (see West 1995 and 
references to that)



Empirical mode decomposition

• Non stationary, non-harmonic signal

• Wish to attain instantaneous measure of frequency and energy 

• Hilbert transform

• Construct 

• then 

• But, for this work, the X(t) must satisfy a number of conditions (same number of zero 
crossings and extrema)

• Empirical mode decomposition is a way of decomposing any signal into a linear combination 
of “intrinsic modes” which satisfy these conditions

Nonlinear and non-stationary time series analysis 911

of the processes and not just to fulfil the mathematical requirements for fitting the

data. This is especially important for the nonlinear phenomena, for a manifestation

of nonlinearity is the ‘harmonic distortion’ in the Fourier analysis. The degree of

distortion depends on the severity of nonlinearity; therefore, one cannot expect a

predetermined basis to fit all the phenomena. An easy way to generate the necessary

adaptive basis is to derive the basis from the data.

In this paper, we will introduce a general method which requires two steps in

analysing the data as follows. The first step is to preprocess the data by the empirical

mode decomposition method, with which the data are decomposed into a number

of intrinsic mode function components. Thus, we will expand the data in a basis

derived from the data. The second step is to apply the Hilbert transform to the

decomposed IMFs and construct the energy–frequency–time distribution, designated

as the Hilbert spectrum, from which the time localities of events will be preserved. In

other words, we need the instantaneous frequency and energy rather than the global

frequency and energy defined by the Fourier spectral analysis. Therefore, before going

any further, we have to clarify the definition of the instantaneous frequency.

3. Instantaneous frequency

The notion of the instantaneous energy or the instantaneous envelope of the signal

is well accepted; the notion of the instantaneous frequency, on the other hand, has

been highly controversial. Existing opinions range from editing it out of existence

(Shekel 1953) to accepting it but only for special ‘monocomponent’ signals (Boashash

1992; Cohen 1995).

There are two basic difficulties with accepting the idea of an instantaneous fre-

quency as follows. The first one arises from the deeply entrenched influence of the

Fourier spectral analysis. In the traditional Fourier analysis, the frequency is defined

for the sine or cosine function spanning the whole data length with constant ampli-

tude. As an extension of this definition, the instantaneous frequencies also have to

relate to either a sine or a cosine function. Thus, we need at least one full oscillation

of a sine or a cosine wave to define the local frequency value. According to this logic,

nothing shorter than a full wave will do. Such a definition would not make sense for

non-stationary data for which the frequency has to change values from time to time.

The second difficulty arises from the non-unique way in defining the instantaneous

frequency. Nevertheless, this difficulty is no longer serious since the introduction of

the means to make the data analytical through the Hilbert transform. Difficulties,

however, still exist as ‘paradoxes’ discussed by Cohen (1995). For an arbitrary time

series, X(t), we can always have its Hilbert Transform, Y (t), as

Y (t) =
1

π
P

� ∞

−∞

X(t�
)

t − t� dt�, (3.1)

where P indicates the Cauchy principal value. This transform exists for all functions

of class Lp
(see, for example, Titchmarsh 1948). With this definition, X(t) and Y (t)

form the complex conjugate pair, so we can have an analytic signal, Z(t), as

Z(t) = X(t) + iY (t) = a(t)eiθ(t), (3.2)

in which

a(t) = [X2
(t) + Y 2

(t)]1/2, θ(t) = arctan

�
Y (t)

X(t)

�
. (3.3)

Proc. R. Soc. Lond. A (1998)
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Theoretically, there are infinitely many ways of defining the imaginary part, but the

Hilbert transform provides a unique way of defining the imaginary part so that the

result is an analytic function. A brief tutorial on the Hilbert transform with the

emphasis on its physical interpretation can be found in Bendat & Piersol (1986).

Essentially equation (3.1) defines the Hilbert transform as the convolution of X(t)
with 1/t; therefore, it emphasizes the local properties of X(t). In equation (3.2), the

polar coordinate expression further clarifies the local nature of this representation: it

is the best local fit of an amplitude and phase varying trigonometric function to X(t).
Even with the Hilbert transform, there is still considerable controversy in defining

the instantaneous frequency as

ω =
dθ(t)

dt
. (3.4)

This leads Cohen (1995) to introduce the term, ‘monocomponent function’. In prin-

ciple, some limitations on the data are necessary, for the instantaneous frequency

given in equation (3.4) is a single value function of time. At any given time, there

is only one frequency value; therefore, it can only represent one component, hence

‘monocomponent’. Unfortunately, no clear definition of the ‘monocomponent’ signal

was given to judge whether a function is or is not ‘monocomponent’. For lack of

a precise definition, ‘narrow band’ was adopted as a limitation on the data for the

instantaneous frequency to make sense (Schwartz et al. 1966).

There are two definitions for bandwidth. The first one is used in the study of the

probability properties of the signals and waves, where the processes are assumed to

be stationary and Gaussian. Then, the bandwidth can be defined in terms of spectral

moments as follows. The expected number of zero crossings per unit time is given by

N0 =
1

π

�
m2

m0

�1/2

, (3.5)

while the expected number of extrema per unit time is given by

N1 =
1

π

�
m4

m2

�1/2

, (3.6)

in which mi is the ith moment of the spectrum. Therefore, the parameter, ν, defined

as

N2
1 − N2

0 =
1

π2

m4m0 − m2
2

m2m0
=

1

π2 ν2, (3.7)

offers a standard bandwidth measure (see, for example, Rice 1944a, b, 1945a, b;
Longuet-Higgins 1957). For a narrow band signal ν = 0, the expected numbers

of extrema and zero crossings have to equal.

The second definition is a more general one; it is again based on the moments of

the spectrum, but in a different way. Let us take a complex valued function in polar

coordinates as

z(t) = a(t)eiθ(t), (3.8)

with both a(t) and θ(t) being functions of time. If this function has a spectrum,

S(ω), then the mean frequency is given by

�ω� =

�
ω|S(ω)|2 dω, (3.9)

Proc. R. Soc. Lond. A (1998)
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EMD - further reading & software

• Huang (1998)

• www.clear.rice.edu

• Patrick Flandrin website http://perso.ens-lyon.fr/patrick.flandrin/emd.html 

• No python implementation that I know of yet

• Someone should do it!

• MATLab/C implementation by Patrick Flandrin

• http://perso.ens-lyon.fr/patrick.flandrin/emd.html

• tested, works ok



Systematics in ensembles of time series



Kepler Quarter 1 data (1 CCD)



The general idea

• Systematics = trends common to many light curves

• Model each light curve as linear combination of 1 or more systematic trends + intrinsic 
component (in this case, the “noise” is the intrinsic component)

• How to chose the basis? Must set some constraint

• Require it to be orthogonal (convenient!): PCA, or extensions thereof

• Equate it with ancillary observations: external parameter decorrelation

• Equate it with a subset of your observation sequences (e.g. light curves): TDA 

• Some combination of the above

• PCA of external parameter vectors



Example: the Kepler pipeline (~)

• start from:

• the data matrix: flux versus observation number and star number

• external information: pointing, detector temperature, background level vs time 
(“system_info”)

• Perform PCA on the external parameters 

• Linear decomposition of individual light curves onto principal components + “intrinsic” 
component

• Try it?

• For a different approach, see my talk tomorrow


