Variable Star Classification

Pierre Dubath

Observatory of the University of Geneva Gaia CU7 team Pierre.Dubath@unige.ch June 1st, 2011

> Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. (2011)

doi:10.1111/j.1365-2966.2011.18575.x

Random forest automated supervised classification of *Hipparcos* periodic variable stars

P. Dubath,^{1,2*} L. Rimoldini,^{1,2} M. Süveges,^{1,2} J. Blomme,³ M. López,⁴ L. M. Sarro,⁵ J. De Ridder,³ J. Cuypers,⁶ L. Guy,^{1,2} I. Lecoeur,^{1,2} K. Nienartowicz,^{1,2} A. Jan,^{1,2} M. Beck,^{1,2} N. Mowlavi,^{1,2} P. De Cat,⁶ T. Lebzelter⁷ and L. Eyer^{1,2}

Context

- Work in progress of the CU7 team to get ready for the Gaia data analysis
- Using Hipparcos data as a control sample
 - Establish the best classification strategy
- Current choice: classification in three steps

Variable Star Classification

- Work in progress of the CU7 team to get ready for the Gaia data analysis (major contributions from Isabelle Lecoeur et Lorenzo Rimoldini)
- Random forest classification of Hipparcos periodic variables, Dubath et al. 2011, MNRAS
- Hipparcos unsolved variable classification, Rimoldini et al. in preparation
- Overall performance of a complete Hipparcos variable star classification

Variable Stars (10% to 30%) Non-Periodic Stars SR L Periodic Stars GCAS Be **Constant Stars** DSCT SPB RS ΒY ACV ECL CEP LPV RR

Variable Stars (10% to 30%)

Constant Stars

Periodic Non-Per

Periodic

Non-Per

RS

Non-Per

Periodic

3. Periodic Star Classification

Supervised Classification

Period-Amplitude diagram

Supervised Classification

Туре		Num	Main reference
Eclipsing Binary	EA	228	Hipparcos
	EB	255	Hipparcos
	EW	107	Hipparcos
Ellipsoidal	ELL	27	Hipparcos
Long Period Variable	LPV	285	Lebzelter (p. c.)
RV Tauri	RV	5	AAVSO
W Virginis	CWA	9	AAVSO
	CWB	6	AAVSO
Delta Cepheid	DCEP	189	AAVSO
(first overtone)	DCEPS	31	AAVSO
(multi mode)	CEP(B)	11	AAVSO
RR Lyrae	RRAB	72	AAVSO
	RRC	20	AAVSO
Gamma Doradus	GDOR	27	De Cat (p. c.)
Delta Scuti	DSCT	43	AAVSO
(low amplitude)	DSCTC	81	AAVSO
SX Phoenicis	SXPHE	4	AAVSO
Beta Cephei	BCEP	30	De Cat (p. c.)
Slowly Pulsating B star	SPB	81	De Cat (p. c.)
B emmission line star	BE	9	AAVSO
Gamma Cassiopeiae	GCAS	4	AAVSO
Alpha Cygni	ACYG	18	AAVSO
Alpha-2 Canum Venaticorum	ACV	77	Romanyuk (p. c.)
SX Arietis	SXARI	7	Romanyuk (p. c.)
BY Draconis	BY	5	Eker et al. (2008)
RS Canum Venaticorum	RS	30	Eker et al. (2008)
	Total:	1661	

Table 1. Training set composition

AAVSO : Watson, Henden, & Price (2010)

Lomb-Scargle period search

• (Zechmeister & Kűrster 2009)

Fourier series modeling

Original Time Series

Srv: hipparcos, Src: 60259

Phase Period 6.734007

Supervised Classification

Random Forest (1/3)

- Classification trees
- Binary partitions using one attribute
- Each split minimize impurity

Random Forest (2/3)

Attribute 1

Random Forest (3/3)

- Bootstrapping
- A_i from a random sub-set of attributes
- Average many trees

Multistage classification

Random Forest Attribute Importance

1. Log(Period)							0
2. Log(Amplitude)							0.0
3. V – I						O	
4. M _{Hipparcos}						· · · O · · · ·	
5. Scatter: res/raw						0,00,000	
6. Skewness					· · · O · · ·		
7. Log(1 + A ₂ / A ₁)				0			
8. P2p scatter: 2P/raw				0			
9. P2p scatter			· · O · · ·				
10. Percentile90: 2P/P		· · · · · O					
11. Residual scatter	· · · · · · o)					
12. Phase ₂							
13. P2p scatter: P/raw							
14. P2p slope	0000000						
		- 1					
	3.2	3.3	3.4	3.5	3.6	3.7	3.8
	Out	–Of–Ba	ag Mea	an Dec	rease	Accura	су

 Attributes with Spearman correlation larger than 80% are trimmed

Cross-Validation

Random Forest CV error rates

EA	EB	EW	ELL	LPV	RV	CWA	CWB	DCEP	DCEPS	CEP(B)	RRAB	RRC	GDOR	DSCT	DSCTC	BCEP	SPB	BE+GCAS	ACYG	ACV	SXARI	BY+RS	
214	13									1													EA
19	191	28	2	1				2					1		4		3		2	2			EB
	30	76							1														EW
	14			1									1		1		3			5		2	ELL
				285																			LPV
	1			1				2	1														RV
	2				1			5														1	CWA
	1						2	2	1														CWB
								183	5	1													DCEP
	1							11	17													2	DCEPS
	1							4		6													CEP(B)
	1										69	1					1						RRAB
	2	4									1	12		1									RRC
													27										GDOR
	1	1									1			32	12								DSCT
	1													1	77					2			DSCTC
	1	1													1	26	1						BCEP
			1													1	74		1	4			SPB
1									1								5		2	4			BE+GCAS
	1																	1	13	2		1	ACYG
	3								1				1				6			66			ACV
	2																2			3			SXARI
	1							1														33	BY+RS

3. Periodic Star Classification

Variability detection

• Variability criteria

Using errors

Chi square

Skewness

Kurtosis

Stetson

$\chi^2 = \sum_{i=1}^{N} \left(\frac{x_i - \overline{x}}{\sigma^2} \right)^2$	
$\frac{1}{4bbc} = \frac{1}{1} \frac{\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2}{\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2}$	2
$2 \sum_{i=1}^{n} (x_i - \overline{x})^2$	

Compute pValues: probability of the null hypothesis H₀

= constant star

Outlier median

→ If pValue < 1e-4 \rightarrow variable star

Not using errors

Skewness

Inter-quartile range

B/R Correlation

Kurtosis

Abbe

Inter-quartile range Hypparcos pValues

Stetson Test

Interquartile Range Test

Comparison of tests to select variables

Choice for variability detection

- Union of Stetson with pValues < 1e-2 and Inter-quartile range with pValues < 1e-3
 - → 17'006 candidates (14.8 % of total)

3. Periodic Star Classification

Periodicity detection through a supervised classification

- Compute a number of "attributes" characterizing objects and their light-curve
- Use attributes (features) as predicators (variables) in a supervised classifiers
- Train the classifier with a set of stars of known types
- Use a 10-fold Cross-Validation (CV) to evaluate the performance of this approach

Period search

- Generalized Lomb–Scargle method (Zechmeister & Kűrster 2009)
- Our Sample of 15'527 stars includes 3022 stars with known periods (3022 = 2657 P + 365 U)
- Recovery rate of 77 % (2323 out of 3022)
 - → 1644 with correct period
 - → 679 with twice the period values
- Recovery rate for the 2657 periodic = 86 % (i.e., 2300)

Hipparcos variability types

Total : 15527

P:2657 != 2712

Hip Types R (662) D (816) ...removed from TS!

Random forest attribute importance

rfRes

WstetsonJ	
VI_Color	0
Raw_LogRange	·····0
p2pScatterFoldedDetrendedTSratio	0
qsoVar	
variation5Bin2	0
FAP0	0
p2pScatterNorm2OnFoldedTS	
logPqso	0
Raw_RobustWeightedStdDev	0
logPnonQso	Ο
variation5MedianBin2	0
variation5MedianBin4	O
variation5MedianBin5	·····O
scatterResidualDetrMeanTSratio	0
WstetsonK	0
Parallax_Error	0
Detr_Skewness5_95	0
Res_WeightedNormalizedP2pScatter	0

0.37

 Attributes with Spearman correlation larger than 80% are trimmed

MeanDecreaseAccuracy

0.39

0.40

0.38

Random forest CV error rates

Number of attributes used in classification

Cross–Validation Error Rate

Random forest confusion matrix

Constant		Microvariable	Unsolved	Periodic	7
212	549		1		Constant
112	3738	94	405	11	
	319	313	152	10	Microvariable
	523	68	6167	196	Unsolved
	33	27	503	2094	Periodic

Predicted types for non-periodic identified as periodic

Conclusion

- We established a complete scheme for variable star classification
- Optimized for Hipparcos data
 - Training set must be representative of the test set
- Hipparcos classification relatively easy: clean sample
 and well known stars
- Can be completed with additional information
 - Color light curves
 - Radial velocity time series
- Next step: apply our scheme to other surveys