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Introduction

m the cosmological large-scale structure encodes a wealth of
information about the evolution and origin of the Universe

m the data are plagged by many observational effects (mask,
selection function, bias ...)

m statistical treatment is necessary
m compare observations with theory

m study structure formation
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Bayes theorem: the posterior

P(s|p)P(dls, p)
J dsP(s|p)P(d|s, p)’

Posterior=prior x likelihood /evidence

P(sld,p) = (1)
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Bayes theorem: the posterior

P(s|p)P(dls, p)
J dsP(s|p)P(d|s, p)’

Posterior=prior x likelihood /evidence

P(s|d,p) = (1)

—> clear representation of the assumptions
—> can be easily extended to nonlinear cases
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m Definition of the prior: knowledge of the underlying signal

Definition of the likelihood: nature of the observed data
Linking the prior to the likelihood: link signal to the data
Bayes theorem: the posterior

Maximization of the posterior: MAP

Sampling the posterior: MCMC
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Bayesian inference steps

m Definition of the prior: knowledge of the underlying signal

m Definition of the likelihood: nature of the observed data
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Bayesian inference steps

Definition of the prior: knowledge of the underlying signal
Definition of the likelihood: nature of the observed data
Linking the prior to the likelihood: link signal to the data
Bayes theorem: the posterior

Maximization of the posterior: MAP

Sampling the posterior: MCMC
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m Lagrangian perturbation theory: displacement field

x=q+W. (2)
Mass conservation:
p(x, t)dx = (p(t;))dq. (3)
The inverse of the Jacobean leads to the overdensity field:
14 3(x(a, £)) = I(a.£) . (4)
with :
Ox
J(g,t) = |=—| . 5
@1 = |5 ©)
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Physical motivation: model | Fk & Raul Angulo in prep
m Lagrangian perturbation theory: displacement field
x=q+W.

m Mass conservation:
p(x, t)dx = (p(t;))dq.
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Physical motivation: model | Fk & Raul Angulo in prep

m Lagrangian perturbation theory: displacement field
x=q+W.
m Mass conservation:

p(x, t)dx = (p(t;))dq.

m The inverse of the Jacobean leads to the overdensity field:

1+0(x(a, 1)) = J(a, 1),

with
Q
dq

J(a,t) =
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Testing model | with MR

Forward relation from z = 127 to z = 0:
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Testing model | with MR

Inverse relation from z =0 to z = 127:
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Testing model | and Il with MR Fk & Raul Angulo in prep

Cell-to-cell comparison:
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Testing model | and Il with MR: matter statistics
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Testing model | and Il with MR: matter statistics
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Testing model | and Il with MR: peculiar motions
FK, Raul Angulo, Yehuda Hoffman & Stefan Gottloeber in prep
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Testing model | and Il with MR: peculiar motions
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Non-Gaussian expansions

m relax the Gaussian-Lognormal assumption

m skewed Gaussian Edgeworth expansion (univariate case:
Juszkiewicz, Bouchet & Colombi 93)

m skewed lognormal model with the 1D Edgeworth exansion
(univariate case: Colombi 94)
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Non-Gaussian expansions: multivariate case rk 2010

m Let me introduce here the multivariate case:

®; =Inp;i —(Inp) = si — i, V;EZS;;I/zq’i,
J

si=In(pi/(p)) = In(1 + dwmi)
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Non-Gaussian expansions: multivariate case rk 2010

m Let me introduce here the multivariate case:

S =Inp; —(Inp) =s; — pj, vi= 2551/2@7 (6)
J

si = In(pi/(p)) = In(1 + oni)
m Multidimensional Edgeworth expansion

1 - - -
P(®) = GW)[1+ 37 D (®rdydu) D 5,128,250 hi(v)

3!
i k! ijk
1 —1/2c—1/2c—1/2 c—1/2
T Z <¢f’¢f’¢k’¢”>zsiﬂ / Sy / Skk’/ S " hia(v) +...], (7)
Noaas ijkl
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Lognormal model

m Oth order: lognormal model (G(v) — P(dm|S))
(Inpi) = In(p) + pi

P(6mS) =

1 1
(2m)Neensdet(S) 1:[ 1+ dmk
xexp (—% D (In(1+6wi) — ) S (In(1 + 6wyj) — MJ)) ;

y

multidimensional implementation for matter field reconstructions:
FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010
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Lognormal model

m Oth order: lognormal model (G(v) — P(dm|S))
(Inpi) = In(p) + pi

P(6mS) =

1 1
(2m)Neensdet(S) 1:[ 1+ dmk
xexp (-% D (In(1+6wi) — ) S (In(1 + 6wyj) — Mj)) )

y

multidimensional implementation for matter field reconstructions:
FK, Jasche & Metcalf 2009; applied to SDSS DR7: Jasche, FK, Li & Ensslin 2010

m when dy < 1 — Gauss distribution

Francisco-Shu Kitaura Bayesian reconstruction



Definition of the prior

Definition of the likelihood

Link between the prior and the likelihood
Bayes theorem: the posterior

Maximum a posteriori

MCMC Sampling

Introduction
Bayesian approach
Conclusions

Definition of the likelihood

Discreteness of the galaxy distribution: shot noise

Galaxy selection function in a magnitude limited survey

Link between underlying matter field and the galaxy field
Discrete Press-Schechter: Borel distribution (Epstein 1983)
Gravitothermal dynamics (Saslaw 1986, Itoh et al 1988, Sheth 1995)
m Non-Poissonian distribution (FK in prep )

>0k — Qui)A

PUNHGL Q) = [T =

k

NE -1
X <Z(5II<</ — Qi)+ Z Qk,mN51>
/ m
Xexp <_ Z((Sﬁn - Qk,n)An - Z Qk,oN§>

n
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Define the likelihood: nature of the observable

B For a sparse sample: Poisson limit

PANEN D =[] %ﬁ‘” (10)

k

full treatment: FK & Ensslin 2008; FK, Jasche & Metcalf 2009

m Observation process: radial selection function and sky mask binomial
process: either we see the galaxy or not

i = W,')\; (11)

treatment proposed in FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson
& White 2009

m the correlation is encoded in the underlying density field in A\«
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Link between the prior and the likelihood

m galaxy bias
dgi = B(dm)i, (12)

m Fry & Gaztanaga 93 (generalized)

bgi = Z B;}éMj + Omi Z BUZ"SMJ +e (13)
j Jj
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Response operator

m Response operator

Definition of the prior

Definition of the likelihood

Link between the prior and the likelihood
Bayes theorem: the posterior

Maximum a posteriori

MCMC Sampling

Ak = M(0m) = R(dg(dMm))xk 5 (14)

M= wili(1+ B(Bw)i), (15)
Ak = WkN(]. + b(sMk) , (16)
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Bayes theorem: the posterior

~ P(m|S)P(N|X(dm))
P(owIN,S) = fddMPhg(imS)P(Nk&(dM))’ (17)
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Bayes theorem: the posterior

1 1 -1
x H mexp <—§ Zj:(ln(l +0mi) — pi) Sy (In (1 + omy) — Mj)>

1 /212 o
x[1+ 5 > (@) >SS S P hi(v)

° i’ k! ijk
1 _ _ _ _
+0 ST (@) >SS Y2S 28 12  h(w) + ]
) ik ijki
N(1+ bdnik))"« ~wiN(1 + b
XH (Wi N(1 + b)) Veexp (—wi N(1 + Mk))’ (18)
Ni!

k
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Maximum a posteriori

m Let us define the energy E(s)

E(s)=—In(P(s|N,S)), (19)
s MAP
OE(s) _
55 =0 (20)

m Krylov conjugate gradient schemes (FK & Ensslin 2008; Jasche, FK, Wandelt,
Ensslin 2009; FK, Jasche, & Metcalf 2009)

R o L) (21)

1 1
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Results: Wiener filter reconstruction of the SDSS DR6

Introduction
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Conclusions

Wiener-filter with the ARGO code: FK, Jasche, Li, Ensslin, Metcalf,
Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6
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(about 250.000 galaxies from the main sample)

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: detection of a super-void in the SDSS DR6

Introduction
Bayesian approach
Conclusions

(about 250.000 galaxies from the main sample)— cluster prediction

FK, Jasche, Li, Ensslin, Metcalf, Wandelt, Lemson & White 2009
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Results: matter statistics in the SDSS DR6
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Results: lognormal filter against Wiener filter and inverse
weighting

tests with the Millenium Run including selection function effects (about
350.000 mock galaxies)
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Results: lognormal filter against Wiener filter and inverse

weighting
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Results: matter statistics in the lognormal reconstruction
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Sampling the posterior

m Hamiltonian sampling (Taylor et al 2010, Jasche & FK 2010, FK, Simona Gallerani
& Andrea Ferrara 2010)

H(s,p) = K(p) + E(s), (22)

m kinetic term with a given mass as the variance for the momenta

1 _
K(p)=5p'M'p, (23)

m Marginalization over the momenta

e=H oK E
Pls.p) = S5 = 55 = PIPG). (24)
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Sampling the posterior

m Hamiltonian evolution equations: (s,p) — (s',p’)

dp  OH  OE

- _ = 2
dt Js ds’ (25)
ds OH
— = =M 26
m Metropolis-Hastings acceptance step
p. = min(1, e "), (27)

dH = H(s',p’) — H(s,p) — we do not care about the evidence!
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Results: matter field reconstruction of the SDSS DR7 with
Hamiltonian sampling and the lognormal prior

B deformation tensor of the grav.
Pot. ®:

%

Ti= ——
Oxi0x;

(28)
m eigenvalues A1 > X2 > A3, > O:
contraction, < 0: expansion

m classification: void: all< 0,
sheet 1A> 0, filament 2\ > 0,
halo: 3A > 0 (with threshold

see Forero-Romero et al 2009)
Jasche, FK, Li & Ensslin 2010
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Skewed matter statistics: FK in prep
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Skewed matter statistics
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Lyman alpha forest 3D
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Lyman alpha forest 3D
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FK, Simona Gallerani & Andrea Ferrara 2010
Simona Gallerani, FK & Andrea Ferrara 2010
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Conclusions

m There is a need to compare observations with theory as precisely as
possible.

Observations are plagued by many uncertainties which require a statistical
treatment.

The Bayesian approach is flexible and clear.

We have shown that we can deal with complex models in this framework.

There is a lot to do in Cosmology!
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