
ASTROSTATISTICS AND DATA MINING IN ASTRONOMICAL DATABASES

The Art of Data Science

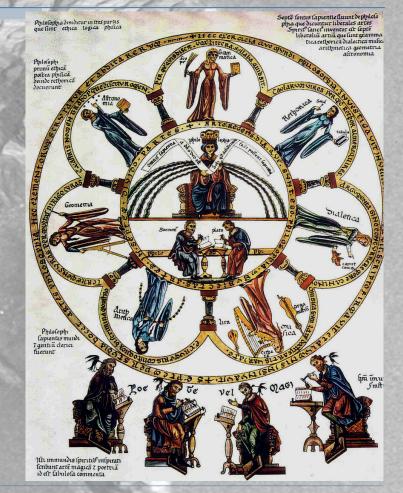
Matthew J. Graham (Caltech, VAO)

The dawn of a new era?

- "We're facing a data flood/tsunami/ explosion/firehose/glut/challenge"
- By the end of the decade, petascale data sets will be a regular feature of daily life
- "To solve it, we need..."
 - The fourth paradigm
 - x-informatics
 - E-/Data science
- "We've been doing this for x years" where $x \in [1,\infty]$

Teaching the new science

وللاماع، أمل للرباضات وإعراب للكراميم من منفسه الالمقعم بدوامع الم صابين والطامعندات المال سروالماكا والمساو وللمناكح و للواب في بيام الذاليخوم وللمسلحات ومات وله عاد في وت

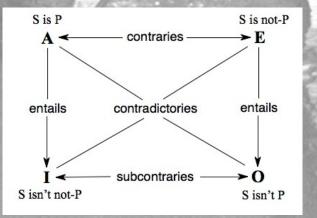


31 May 2011

The seven liberal arts

Trivium:

- Logic
- Grammar
- Rhetoric
- Quadrivium:
 - Arithmetic
 - Geometry
 - Music
 - Astronomy
 - A systemization of knowledge:
 - What rules does it obey
 - How is symbolized
 - How is communicated
 - What is its relationship to physical space and time



31 May 2011

the nature of knowledge

3cut dicit philoloph? ferto me taphyfice tres füt par tes phicipales feie fpe culatine.f.nälis : ma/

thematica. « diuina. Et rő bal? ppofitióis é. q; fcie diffigüé fecundű diffinctioné fuox objectoril de quibus füt, ficut patet p pBm tertio de sla. f5 res a nobis fpeculabiles füt tres naturales mathematice. « diuine, ergo funt tres fcientie fpeculatiue principa/ les.f.naturalis:mathematica: « diuina.

31 May 2011

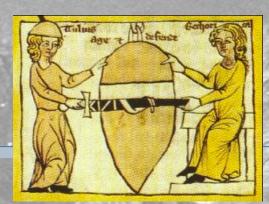
The logic of data

- Anything beyond raw data values is metadata and inferior
- Description of associated knowledge required:
 - Bayesian posterior probability model
 - Semantic constructs
- Ask questions of data via inferencing:
 - Statistical:
 - hypothesis matching
 - Logical:
 - determine inconsistencies
- Ultimate descriptions

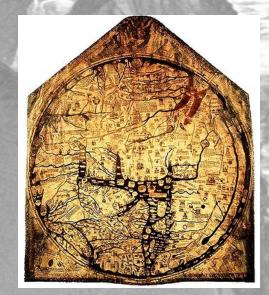
31 May 2011

the symbolism of knowledge

31 May 2011


The grammar of data

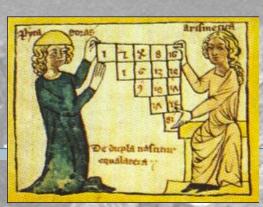
- Data is just numbers or symbols stored in a digital representation
- Structure and its description makes it manipulable
- Raw binary:
 - Blob: Streaming multimedia
 - Separable textual description:
 - FITS, HDF5
 - Common data model with API:
 - CDF, netCDF
- Textual:
 - Separable schema:
 - XML, JSON
 - Interface description language:
 - Protocol Buffers, Avro


31 May 2011

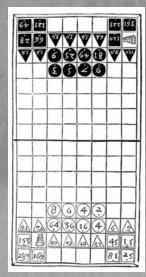
Astrostatistics and Data Mining in Astronomical Databases

the communication of knowledge

31 May 2011



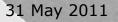
The rhetoric of data

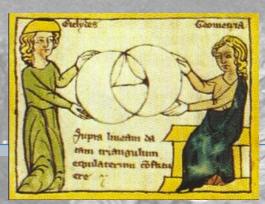

- Data needs to be communicated well and correctly
- Physical transport ("sneakernet"):
 - efficient and reliable
 - sacrifices latency for throughput
 - bespoke
- The future looks bright for advanced capabilities Internet2
- Maximizing conventional means:
 - Multiple streams: GridFTP
 - Fine-tuning/modifying TCP
 - UDP packets: UDT
 - Newer protocols: SCTP
 - Compression: *zip; FITS tile

Astrostatistics and Data Mining in Astronomical Databases

the properties and relationships of pure number

31 May 2011


Astrostatistics and Data Mining in Astronomical Databases

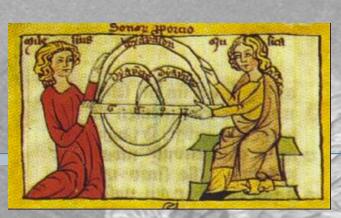


The arithmetic of data

- The utility of data lies in its ability to convey information
- The relative utility follows a logistic trend:
 - Initial data is approximately exponential
 - Progressively more data creates saturation
 - At maturity, zero utility
- Megatrend is succession of or multiply logistic
- Unprecedented progress along these trends:
 - Szalay's law: the utility of N comparable data sets is N²
 - Exponential growth rates (Moore's law)
 - Power considerations:
 - Exascale requires ~100 MW
 - GPUs, trans-silicon technologies

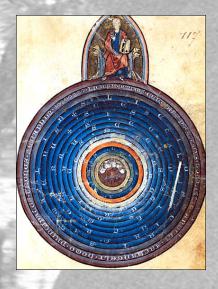
the patterns of number in nature

31 May 2011

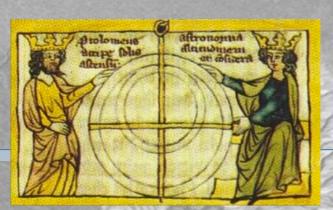

Astrostatistics and Data Mining in Astronomical Databases

The geometry of data

- The architectural order of collections of data facilitates the study of the universe
- Cost of petascale storage: \$40k 3M/PB
- Standard approach for layering high throughput data (GFS/ HDFS):
 - Divide into fixed size chunks (~64MB)
 - Distribute multiple copies across disk cluster
 - Central/master node maintains list of chunk locations, metadata, and data operations
 - Sequence files for large numbers of small files
- Low latency random access (high availability), large numbers of varying sized files, multiple concurrent writes:
 - Distributed multi-dimensional sorted maps (BigTable/Hbase)
 - Swift, iRODs
- RDBMSs do not function well beyond 100TB (Gray & Hey):
 - NoSQL
 - SciDB



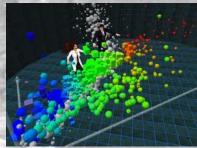
the progression of number through time


31 May 2011

The music of data

- Data computation follows identifiable patterns
- The embarrassingly parallel task:
 - Generic jobs on general resources from local dedicated clusters to scavenged cycles: Conder, BOINC
 - MapReduce (Hadoop) (summation form):
 - Primary choice for fault-tolerant and massively parallel data crunching
 - Mapper transforms input data to intermediate set of (key, value) pairs
 - Gathered, sorted by key and send to reducer
 - Reducer output collected
 - GPUs make brute force tractable
- The streaming (single pass) task:
 - Incremental formulation of algorithm
 - Further optimizations with learning types, e.g., stochastic gradient descent

the patterns of the universe


31 May 2011

Astrostatistics and Data Mining in Astronomical Databases

The astrology of data

- Data contains meaningful patterns
- Data mining has two primary goals:
 - Predicting the future behaviour of certain entities based on the existing behaviour of other entities in the data
 - Finding human-interpretable patterns describing the data
- Data mining techniques can be categorized as:
 - Classification, regression, clustering, summarization, dependency modelling, outlier detection
- Data mining has a process:
 - Collection and preparation/preprocessing
 - Assumption and limitations understood
 - Validation
 - Interpretation
- Incorporation of appropriate prior knowledge
 - Model-based (statistical inferencing)
 - As part of DM algorithm (semantic approach)

31 May 2011

Astrostatistics and Data Mining in Astronomical Databases

The systemization of data

We are *still* concerned with:

- Structural representations of our knowledge
- Communicating well and correctly
- Meaningful architectures
- What are we studying
- What rules apply
- Meaningful patterns
- International and interdisciplinary effort
 - More universal than the IVOA
- Data must be a first-class entity in our worldview
- The Dark Ages of data end today

31 May 2011