
GREAT 2011 Summer School

C3: How to analyze a petabyte

Matthew J. Graham (Caltech, VAO)

Overview

  Using MapReduce for analysis
  Parallelizing an algorithm
  Learning theory
  Making an algorithm online
  Making an algorithm stochastic

02 June 2011 2/16 GREAT 2011 Summer School

The world of MapReduce
  Two basic scenarios:

  Traditional batch processing – text processing, data
warehousing

  Machine learning:
  Training can be computationally hard
  Can be necessary to send tons of data to each mapper

  The key is to have a summation form:

02 June 2011 3/16 GREAT 2011 Summer School

€

y = f (x)∑

reduce map

How to sort a petabyte in 16.1
(or 6.8) hrs
  Algorithm (Hadoop terasort):

  Divide data between mappers
  Mappers produce a key for each data
  The data is partitioned across R reducers using a

partitioning function based on a two-level prefix tree
(trie) that guarantees that all the keys in reduce N
are after all of the keys in reduce N-1

  Normal guarantee that within a given partition, key/
value pairs are processed in increasing key order

  Reducer is an identity function
  Launch on ~3800 nodes (2 x Quad Core 2.5 GHz

Xeons, 4 x 160 GB SATA, 16 GB RAM per node),
80000 mappers, 20000 reducers (1.03 TB/
minute)

02 June 2011 4/16 GREAT 2011 Summer School

MapReduce for data mining

02 June 2011 5/16 GREAT 2011 Summer School

One iteration Multiple iterations Not good for MR

Clustering k-means

Classification Naïve Bayes,
kNN

Gaussian mixture SVM, HMM

Graphs PageRank,
connected component

Information retrieval Inverted index

•  Single pass
•  Keys uniformly distributed

•  Small shared information
 synchronized across iterations
•  Multiple passes
•  Intermediate states are small

•  Large shared information
•  Lot of fine-grained synchronization

K-means clustering
1. Start with k cluster centers (chosen

randomly or to some recipe)
2. Assign each data point to its nearest

cluster center
3. Reevaluate the cluster centers as the

“average” of the data in (2)
4. Repeat until cluster centers no longer

change or some other stopping criterion is
met

Aims to minimize squared loss function:

02 June 2011 6/16 GREAT 2011 Summer School

€

J = xi
(j) − c j

2

i=1

n

∑
j=1

k

∑

K-means illustration

02 June 2011 7/16 GREAT 2011 Summer School

Parallelizing k-means
  Analysis:

  Large amounts of data that do not need to be sent
around processors

  Minimum processor intercommunication
  Data set needs to be read for each iteration but each

point only needs to be read by one processor
  Solution:

  Divide data amongst processors
  Each processor reads previous iteration’s cluster

centers and assigns its data to the clusters
  Each processor then calculates new centers for its

data
  True cluster centers for this iteration are weighted

average of new centers from each processor
  Local clustering, work with average quantities
02 June 2011 8/16 GREAT 2011 Summer School

MapReduce implementation
  Initialize centers for iteration 0 (prerun?)
  Map:

  Get centers from last iteration
  Read data and calculate distance to each center
  Calculate average coordinates for each cluster
  Emit (key = cluster id, value = size of cluster +

average coordinates) for each cluster
  Reduce:

  Calculate weighted average of its input
  Emit (iteration #, cluster id, cluster center

coordinates, size of cluster)
  Persist cluster details for each iteration

02 June 2011 9/16 GREAT 2011 Summer School

Visiting the data only once

  Data are too large to store on
available resources or hold in memory

  Data are not persistent so no later
processing possible

  Rough-and-ready results required for
data exploration

  Time-dependent results to check
convergence, data quality

02 June 2011 10/16 GREAT 2011 Summer School

Learning theory
  The goal of a learning system is to find the minimum

of the expected loss function
  The ground truth function is unknown
  An approximation (empirical loss function) can be

made using a finite training set of independent
observations

  Types of training methods:
  Batch-based – all training data at same time
  Online – incremental updating
  Decremental – handles concept drift
  Stochastic – using random samples of data

  Established k-means MapReduce implementations are
batch-based because output of mappers is completely
written to file system before grouping by keys

02 June 2011 11/16 GREAT 2011 Summer School

Making k-means online
  Need an incremental version of the algorithm:

 Make initial guesses for the centers w1, w2, ..., wt
 Set the counts n1, n2, ..., nt to zero
 Until interrupted:
 Acquire the next example, x
 If wi is closest to x:
 Increment ni
 Replace wi by wi + (1/ni)*(x - wi)
 end_if
 end_until

  Can this be parallelized? (Exercise for the student)

02 June 2011 12/16 GREAT 2011 Summer School

Making k-means stochastic
  k-means is prone to local minima and

sensitive to initial clusters
  Normally repeat several times
  Stochastic algorithm can reach (global)

minimum quicker:
  (Nominally) works with subset of the data
  Relative position of clusters found very quickly
  Terminal convergence slowed down by

stochastic noise implied by random choice of
points

  Great learning algorithm but hopeless
optimization algorithm

02 June 2011 13/16 GREAT 2011 Summer School

Gradient descent learning

  In gradient descent, the parameter updates
are proportional to the gradient of the
partial loss:

 where wt is the value of the centers after
updating from example t and µ is the
learning rate.

  For k-means:

02 June 2011 14/16 GREAT 2011 Summer School

€

wt+1 = wt − µ t∇J t (wt)

€

wt = wt−1 − 2µt (w
t−1 − zi)

Learning rate
  The convergence rate of gradient descent

drastically improves:
  replacing the scalar learning rate µt by a definite

positive symmetric matrix ϕt that approximates the
inverse Hessian of the loss function:

  For k-means:
  the Hessian of the loss function is a diagonal matrix

whose coefficients are equal to the probability that an
example x is associated with the center wt

  This can be estimated by:
  simply counting how many examples nt have been

associated with a cluster wt

02 June 2011 15/16 GREAT 2011 Summer School

€

Φt ≈ H
−1(wt),

€

H(w) =∇∇wJ(w)

Stochastic implementation
Make initial guesses for the centers w1, w2, ..., wt
Set the counts n1, n2, ..., nt to zero

 Until interrupted:
 Acquire the next example, x
 If wi is closest to x:
 Increment ni
 Replace wi by wi + (1/ni)*(x - wi)
 end_if
 end_until

This is the same as the online version!

02 June 2011 16/16 GREAT 2011 Summer School

