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Overview 

  Using MapReduce for analysis 
  Parallelizing an algorithm 
  Learning theory  
  Making an algorithm online 
  Making an algorithm stochastic 
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The world of MapReduce 
  Two basic scenarios: 

  Traditional batch processing – text processing, data 
warehousing 

  Machine learning: 
  Training can be computationally hard 
  Can be necessary to send tons of data to each mapper  

  The key is to have a summation form: 

02 June 2011 3/16 GREAT 2011 Summer School 

€ 

y = f (x)∑

reduce map 



How to sort a petabyte in 16.1 
(or 6.8) hrs 
  Algorithm (Hadoop terasort): 

  Divide data between mappers 
  Mappers produce a key for each data 
  The data is partitioned across R reducers using a 

partitioning function based on a two-level prefix tree 
(trie) that guarantees that all the keys in reduce N 
are after all of the keys in reduce N-1 

  Normal guarantee that within a given partition, key/
value pairs are processed in increasing key order 

  Reducer is an identity function 
  Launch on ~3800 nodes (2 x Quad Core 2.5 GHz 

Xeons, 4 x 160 GB SATA, 16 GB RAM per node), 
80000 mappers, 20000 reducers (1.03 TB/
minute) 
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MapReduce for data mining 
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One iteration Multiple iterations Not good for MR 

Clustering k-means 

Classification Naïve Bayes, 
kNN 

Gaussian mixture SVM, HMM 

Graphs PageRank,  
connected component 

Information retrieval Inverted index 

•  Single pass 
•  Keys uniformly distributed 

•  Small shared information  
  synchronized across iterations 
•  Multiple passes 
•  Intermediate states are small 

•  Large shared information 
•  Lot of fine-grained synchronization 



K-means clustering 
1. Start with k cluster centers (chosen 

randomly or to some recipe) 
2.  Assign each data point to its nearest 

cluster center 
3.  Reevaluate the cluster centers as the 

“average” of the data in (2) 
4.  Repeat until cluster centers no longer 

change or some other stopping criterion is 
met 

Aims to minimize squared loss function: 
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K-means illustration 
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Parallelizing k-means 
  Analysis: 

  Large amounts of data that do not need to be sent 
around processors 

  Minimum processor intercommunication 
  Data set needs to be read for each iteration but each 

point only needs to be read by one processor 
  Solution: 

  Divide data amongst processors 
  Each processor reads previous iteration’s cluster 

centers and assigns its data to the clusters 
  Each processor then calculates new centers for its 

data 
  True cluster centers for this iteration are weighted 

average of new centers from each processor 
  Local clustering, work with average quantities 
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MapReduce implementation 
  Initialize centers for iteration 0 (prerun?) 
  Map: 

  Get centers from last iteration 
  Read data and calculate distance to each center 
  Calculate average coordinates for each cluster 
  Emit (key = cluster id, value = size of cluster + 

average coordinates) for each cluster 
  Reduce: 

  Calculate weighted average of its input 
  Emit (iteration #, cluster id, cluster center 

coordinates, size of cluster) 
  Persist cluster details for each iteration   
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Visiting the data only once 

  Data are too large to store on 
available resources or hold in memory 

  Data are not persistent so no later 
processing possible 

  Rough-and-ready results required for 
data exploration 

  Time-dependent results to check 
convergence, data quality 
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Learning theory 
  The goal of a learning system is to find the minimum 

of the expected loss function 
  The ground truth function is unknown 
  An approximation (empirical loss function) can be 

made using a finite training set of independent 
observations 

  Types of training methods: 
  Batch-based – all training data at same time 
  Online – incremental updating 
  Decremental – handles concept drift 
  Stochastic – using random samples of data 

  Established k-means MapReduce implementations are 
batch-based because output of mappers is completely 
written to file system before grouping by keys 
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Making k-means online 
  Need an incremental version of the algorithm: 

 Make initial guesses for the centers w1, w2, ..., wt 
 Set the counts n1, n2, ..., nt to zero 
 Until interrupted: 
  Acquire the next example, x 
  If wi is closest to x: 
   Increment ni 
   Replace wi by wi + (1/ni)*(x - wi) 
  end_if 
 end_until 

  Can this be parallelized? (Exercise for the student) 
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Making k-means stochastic 
  k-means is prone to local minima and 

sensitive to initial clusters 
  Normally repeat several times 
  Stochastic algorithm can reach (global) 

minimum quicker: 
  (Nominally) works with subset of the data 
  Relative position of clusters found very quickly 
  Terminal convergence slowed down by 

stochastic noise implied by random choice of 
points  

  Great learning algorithm but hopeless 
optimization algorithm 
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Gradient descent learning 

  In gradient descent, the parameter updates 
are proportional to the gradient of the 
partial loss: 

 where wt is the value of the centers after 
updating from example t and µ is the 
learning rate. 

  For k-means: 
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wt+1 = wt − µ t∇J t (wt )
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wt = wt−1 − 2µt (w
t−1 − zi)



Learning rate 
  The convergence rate of gradient descent 

drastically improves: 
  replacing the scalar learning rate µt by a definite 

positive symmetric matrix ϕt that approximates the 
inverse Hessian of the loss function:


  For k-means:  
  the Hessian of the loss function is a diagonal matrix 

whose coefficients are equal to the probability that an 
example x is associated with the center wt 

  This can be estimated by: 
  simply counting how many examples nt have been 

associated with a cluster wt    
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Stochastic implementation 
Make initial guesses for the centers w1, w2, ..., wt 
Set the counts n1, n2, ..., nt to zero 

 Until interrupted: 
  Acquire the next example, x 
  If wi is closest to x: 
   Increment ni 
   Replace wi by wi + (1/ni)*(x - wi) 
  end_if 
 end_until 

This is the same as the online version! 
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