20 A h{.. -: 20 11, Ul;/ll\QER 5cg-1001_ ,.
;/ : Vo :

i "' U YT O
i 3 VN x%" A

C3: How to analyze a petabyte

Matthew J. Graham (Caltech, VAO)










How to sort a petabyte in 16.1
(or 6.8) hrs

5 Algorithm (Hadoop terasort):
- Divide data between mappers
- Mappers produce a key for each data

-« The data is partitioned across R reducers usmfg
partitioning function based on a two-level prefix tree
(trie) that ﬁuarantees that all the keys in reduce N
are after all of the keys in reduce N-1

- Normal guarantee that within a given partition, key/
value pairs are processed in increasing key order

Reducer is an identity function
. Launch on ~3800 nodes (2 x Quad Core 2.5 GHz
Xeons, 4 x 160 GB SATA, 16 GB RAM per node),
80000 mappers, 20000 reducers (1.03 TB/
minute)

02 June 2011 GREAT 2011 Summer School 4/16



T
-

Classification Naive Bayes, Gaussian mixture SVM, HMM
kNN
Graphs PageRank,
connected component

Information retrieval Inverted mdex




K-means clustering

1. Start with k cluster centers (chosen
randomly or to some recipe)

. Assign each data point to its nearest
cluster center

2

3. Reevaluate the cluster centers as the
“average” of the data in (2)

4

. Repeat until cluster centers no longer
change or some other stopping criterion is
met

Aims to minimize squared loss function:

2
-o)f

02 June 2011 GREAT 2011 Summer School 6/16

j=1i=1






Parallelizing k-means

5 Analysis:

-« Large amounts of data that do not need to be sent
around processors

= Minimum processor intercommunication

-« Data set needs to be read for each iteration but each
point only needs to be read by one processor

5 Solution:
- Divide data amongst processors

« Each processor reads previous iteration’s cluster
centers and assigns its data to the clusters

- Each processor then calculates new centers for its
data

« True cluster centers for this iteration are weighted
average of new centers from each processor

- Local clustering, work with average quantities

02 June 2011 GREAT 2011 Summer School 8/16



MapReduce implementation

- Initialize centers for iteration O (prerun?)
- Map:
- Get centers from last iteration
- Read data and calculate distance to each center
- Calculate average coordinates for each cluster
- Emit (key = cluster id, value = size of cluster +
average coordinates) for each cluster
- Reduce:
- Calculate weighted average of its input
- Emit (iteration #, cluster id, cluster center
coordinates, size of cluster)

o Persist cluster details for each iteration

02 June 2011 GREAT 2011 Summer School 9/16



Visiting the data only once

- Data are too large to store on
available resources or hold in memory

- Data are not persistent so no later
processing possible

s Rough-and-ready results required for
data exploration

- Time-dependent results to check
convergence, data quality

02 June 2011 GREAT 2011 Summer School 10/16



Learning theory

O

The goal of a Iearnin? system is to find the minimum
of the expected loss function

The ground truth function is unknown

An approximation (empirical loss function) can be
made using a finite training set of independent
observations
Types of training methods:
- Batch-based - all training data at same time
- Online - incremental updating
Decremental - handles concept drift
- Stochastic - using random samples of data
Established k-means MapReduce implementations are

batch-based because output of mappers is completely
written to file system before grouping by keys

02 June 2011 GREAT 2011 Summer School 11/16






Making k-means stochastic

o k-means is prone to local minima and
sensitive to initial clusters

- Normally repeat several times

- Stochastic algorithm can reach (global)
minimum quicker:
-« (Nominally) works with subset of the data
- Relative position of clusters found very quickly

- Terminal convergence slowed down by
stochastic noise implied by random choice of

points

- Great learning algorithm but hopeless
optimization algorithm

02 June 2011 GREAT 2011 Summer School 13/16






Learning rate

The convergence rate of gradient descent

drastically improves:
replacing the scalar learning rate y; by a definite
positive symmetric matrix ¢, that approximates the
Inverse Hessian of the loss function:

® ~H'(w,), Hw)=VV _J(w)

s For k-means:

the Hessian of the loss function is a diagonal matrix
whose coefficients are equal to the probability that an
example x is associated with the center w,

- This can be estimated by:
simply counting how many examples n, have been
associated with a cluster w;

O

02 June 2011 GREAT 2011 Summer School 15/16






