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What are we actually measuring?

In orbit a telescope forms di�raction limited images (c.
10mas for a 10m telescope in the visible), but as the
wavefront passes through turbulent layers of the
atmosphere it is distorted; the result is that the image
quality is degraded to a FWHM of around an arcsecond.
Locally we may treat this as a convolution by a Point
Spread Function φatmos:

Ic = Iorbit ⊗ φatmos
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What are we actually measuring?

The (R, G, B) values are related to the intensity
recorded by a CCD

The image Ic delivered by the telescope is continuous,
but we have a �nite number of �nite-sized pixels; i.e.

Ij ≡ I (xj) =

Z xj+
1
2

xj− 1
2

Ic (y )dy =

Z ∞

−∞
P(y − xj)Ic (y )dy

where

P(x) =

(
1 |x | < 0.5

0 otherwise

We can only measure I (x) at the points xj , but it is
de�ned everywhere.
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What are we actually measuring?

So

I = Iorbit ⊗ φatmos ⊗ P

≡ Iorbit ⊗ φ

In otherwords, the PSF includes a contribution from the
pixel response function, P.
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Raw data Iorbit ⊗ φatmos at the detector
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Pixel-smoothed data
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Sampled data
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Dirac combs

If we de�ne

δT (x) =
∞X

j=∞

δ(x − jT )

then the function we actually measure (the red dots) is

I (x)δ1(x)

Why is this interesting?
Because it turns out that, under some conditions, we've
lost no information by only sampling at the pixel centres.
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Fourier Transforms

If we de�ne

F (f ) ≡
R∞
−∞ F (x)e2πifx dx

F (x) ≡ 1

2π

R∞
−∞ F (f )e−2πifx dx

then
δT (x) ↔ δ1/T (f )
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Convolutions

Let us agree to use F to denote a Fourier transform:

F(F (x)) ≡ F (f )

You will remember that

F
„Z ∞

−∞
G(y )H(x − y )dy ≡ G ⊗H

«
= G(f )H(f )

So
F (I (x)δl(x)) = I (f )⊗ δ1/l(f )

Let us assume that I is band-limited; i.e. that its Fourier
transform vanishes outside some interval (which I shall take
to be −1/2...1/2 for now).
We just wrote:
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I (f )
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I (f ) and δ1
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I (f )⊗ δ1
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I (f )⊗ δ1
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I (f )⊗ δ1
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Nyquist Sampling

Something happened at l = 1, or (more generally) at

l =
1

2fc

Let us look at a set of independent sinusoids (i.e. Fourier
modes) with a variety of frequencies, and try to �nd out
what happened at l = 1.
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ν = 0.2fc
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ν = 0.6fc
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ν = 0.6fc
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ν = 1.0fc
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ν = 1.4fc
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ν = 1.4fc
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ν = 1.975fc
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ν = 2.0fc
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Aliasing

I.e. we can draw more than one curve through a given set
of points � any Fourier component above fc is
indistinguishable from a component in [−fc , fc ).
This is known as aliasing.
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Is being band-limited trivial?

The wave front from a distant star is essentially a plane
wave; and ideal telescope will convert this into a point:

e ik.(x−x0) → δ(x − x0)

In reality we don't have in�nitely large telescopes, so the
incoming wave is

e ik.x r ≤ R

0 r > R

so

φ ∝
Z
r≤R

e ik.x dx

So yes, at 2R/λ � but this is irrelevant in most cases; 1
arcsec for an R = 5cm telescope.
In reality, we have an atmosphere, and

φ ∼ F−1
“
e−k

5/3
”
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Springs

Consider a set of point masses m connected with springs of
length d and with spring constants κ.
If you calculate the dispersion relation you'll easily �nd

ω2 =
4κ

m
sin2

„
kd

2

«
i.e. waves with frequencies ω > 4κ/m are exponentially
damped; the transition occurs at a wavenumber of k = d/2.
Lord Kelvin knew that materials are opaque to light with
λ ∼< 400 nm; but he knew that d � 200 nm.

�I believe that by imagining each molecule to be
loaded in a certain de�nite way by elastic
connection with heavier matter [I can explain the
discrepancy] ... it is not seventeen hours since I saw
the possibility of this explanation�
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Sinc Resampling

Our CCD measured
I (x)δ1(x)

and you know that

F (I (x)δl(x)) = I (f )⊗ δ1/l(f )
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I (f )⊗ δ1/T
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I (f )⊗ δ1/T

´
× P



The Sampling Theorem Sinc Resampling

I (f )
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Sinc Resampling

In symbols,
F (I (x)δl(x)) = I (f )⊗ δ1/l(f )

F (I (x)) =
`
I (f )⊗ δ1/l(f )

´
× P(x)

i.e.
I (x) = (I (x)× δl(x))⊗ P(x)

I (x) =
X
j

I (xj)
sin (π(xj − x))

π(xj − x)
≡

X
j

I (xj) sinc(xj − x)
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Why should you care?

Aperture �uxes

If you want to know

F ≡
Z
r<a

w (r )I (x)2πr dr

How should you evaluate it?
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Aperture �uxes

Maybe we should weight each pixel with its area within the
magenta circle, multiplied by w evaluated at the centre of
the pixel?

F ≈
X
ij

Iijwij

We can do better than that.

F ≡
R
r<a

w (r )I (x)2πr dr

=
R
r<a

w (r )
P

ij Iij sinc(xi − x) sinc(yi − y )dx dy

=
P

ij Iij
R
r<a

w (r ) sinc(xi − x) sinc(yi − y )dx dy

=
P

ij Iijwij

N.b. the weights wi are independent of the data values, and
can be evaluated once and for all.
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Image Resampling

If we have two images taken with the telescope pointing in
slightly di�erent directions, how should I align them?
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Image Resampling

Maybe we should weight each input pixel with its overlap
with the tasteful magenta pixel? We can do better than
that. If the black and magenta pixels have identical shape
and sensitivity pro�le, then all we've done is evaluate

I (x) =

Z ∞

−∞
P(y − x)Ic (y )dy ≡ P ⊗ Ic

at a di�erent point. But, because we know that Ic is
band-limited, we can evaluate it as

I (x) =
X
ij

I (xi , yj) sinc(xi − x) sinc(yj − y )

In reality, the telescope scale is probably slightly di�erent,
and the camera's probably rotated. It's almost always
su�cient to correct the �ux by the Jacobian of the
coordinate transformation.
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Lanczos Kernels

One problem with the sinc kernel is that it has very
non-local support:
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Lanczos Kernels

A popular modi�cation of the sinc kernel is a Lanczos(n)
kernel,

Ln(x) =

(
sinc(x)× sinc(x/n) |x | ≤ n

0 otherwise
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Lanczos Kernels

What does this do in Fourier space?

sinc(x) ≡
sin (πx)

πx

Ln(x) = sinc(x)× sinc(x/n)× P(n)

Ln(k) = sinc(k)⊗ sinc(kn)⊗ P(kn)

= P(k)⊗ P(k/n)⊗ sinc(nk)
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n = 3
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n = 7
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n = 15
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I (f )⊗ δ1/T

´
× P Critical sampling
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I (f )⊗ δ1/T

´
× L3 Critical sampling
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I (f )⊗ δ1/T

´
× L3 20% oversampled
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