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Plan of the talk

Basic definitions of the statistics of hypotheses test
The profile likelihood and its asymptotic formulae
The CLs and PCL methods

Discovery of a Higgs Boson or a WIMP

The look elsewhere effect

Exclusion of a Higgs Boson or a WIMP
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What is the statistical challenge in HEP?

* High Energy Physicists (HEP) have an hypothesis:
The Standard Model.

® This model breaks unless there exists its only one ingredient, yet

to be discovered: the Higgs Boson
HHggs bosol

® The minimal content of the Standard Model
includes the Higgs Boson , but
of the Model include other particle

which are yet to be discovered

e The challenge of HEP is to generate tons of
data and to develop powertul analyses to

tell if the data contains evidence for new




The LHC is a very powerful accelerator aims to
produce 10° proton-proton collisions per sec aiming
to hunt a nggs W|th a 10 12 production probablllty
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4 ™
Dark Matter vs Higgs Search

® The common factor is : both are e Out of 101> WIMPS that

searches for rare events pass through your body
* Higgs can be buried under ~10"2 cvery day, <10 interact!
collision with 0 <1073* cm? e O <10*cm?
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" The Statistical Challenge of HEP

*The DATA: Billions of

Proton-Proton collisions

which could be visualized

with histograms
*The Higgs mass is unknown

°In thisTOY example, we
ask if the expected
background (the Standard
Model WITHOUT the

Higgs Boson) contains a

Higgs Boson, which would
manifest itself as a peak in
the distribution

L
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" The Statistical Challenge of HEP

*So the statistical challenge

is obvious:

70

*To tell in the most powertul

way, and to the best of our l
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apparatus and the
PP mass

background physics suffer

. * Is there a signal hidden in this data?
from large systematic errors  What is its statistical significance?

that should be treated in an « What is the most powerful

test statistic that can tell the SM from an

appropriate way.
PPTOP y hypothesized signal?
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The Null Hypothesis

® The Standard Model without the Higgs is an hypothesis, (BG only
hypothesis), denoted by [f .

® In the absence of an alternate hypothesis, one would like to test

the compatibility of the data with the given H 0 hypothesis.

e This is actually a goodness of fit test

® We are interested to tell between two hypotheses

the BG—only hypothesis and the s+b hypothesis!
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A Tale of Two Hypotheses

ALTERNATE

® Test the Null hypothesis and try to reject it

* Fail to reject it OR reject it in favor of the Alternate hypothesis

Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




A Tale of Two Hypotheses

ALTERNATE

H,- SM w/o Higgs H,- SM with Higgs

H,- SM with Higgs

* Higgs with a specific mass my,

OR

® Hioos anywhere in a specific mass-range
g85 any P g

== 0 The look elsewhere effect
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A Tale of Two Hypotheses

ALTERNATE

H,- SM w/o Higgs H,- SM with Higgs

* Reject H in tavor of H; — A DISCOVERY
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A Tale of Two Hypotheses

NULL ALTERNATE
—_—

® Reject H, in favor of H, — A DISCOVERY

* Reject H, in favor of H, — Excluding H,
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Testing an Hypothesis (wikipedia...)

The first step in any hypothesis testing is to state the relevant
null, H, and alternative hypotheses, say, H,

The next step is to define a test statistic, Q, under the null
hypothesis

Compute from the observations the observed value s cyp the test
statistic Q.

Decide (based on g, ) to either
fail to reject the null hypothesis or
reject it in favor of an alternative hypothesis

next: How to construct a test statistic, how to decide?
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DISCOVERY
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Test Statistic

® To construct a test statistic one needs a model
o L(H,)~Prob(data | H,)
o L(H, )~Prob(data|H,)

® Note: The Likelihood as indicated by its name, is the

compatibility of a given data set with an hypothesis.
If the data changes, so is the Likelihood!
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The Toy Physics Model

e The NULL hypothesis H,: SM
without Higgs Background Only

<n>=b
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black dotted line = jis + b
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The Toy Physics Model

° ® The alternate Hypothesis H;:
e SM with a Higgs with a mass m,

<n>:b <n>:s(mH)+b
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The Toy Physics Model
n=us+b>o n=us+b>b

MLE [ MLE fi
<,&>=O under H, (f1)=1 under H
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" The Profile Likelihood (“PL")

* For discovery we test the H, null
hypothesis and try to reject it

L(b)

qO:—Zln 35— T

L( ﬁs + b) - Asimoy = 4.1575

o v 2log A = 5. 1448
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u~1,q large of

10 N .
5F .
I black dotted line = jis + b
0 PRI S T NN TN T ST N AN T SN SR NN SN T S AN NN SR N
0 20 40 60 80 100

) {,1 Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
A




The PDF of the test statistic

® No, not the Parton Distribution

Function

® Not a Portable Document Format

L( b) ® We need to know the
Probability Distribution Function of

L( ‘[LS + b) the test statistic under the null

,Il > () hypothesis f(q ‘H )
0 0

g, =—2In
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Significance & p-value

® (Calculate the test statistic

|||||||||||||||||||||||||||||

based on the observed _ :
experimental result (after | F(q. | H )
taking tons of data), q 0

10 &

* Calculate the probability

that the observation is ol ; p= J‘:’ f(q, | H)dt |
as or less compatible with e

the background only o 5 10 5 20 25,
hypothesis (p-value) Qobs

p=ftb /g, H,)dq,

If p-value< 2.8-107 , we claim a 50 discovery

0.025 corresponds to 20
0.16 corresponds to 10
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From p-values to Gaussian Significance

® Jtisa custom to

express the p-value
as the significance
associated to it, had
the PDF been

(Faussians
N p-value
p= / e 2y =1 —d(Z) /
. |
k— Zo— X
Z=d'(1-p)

A significance of Z = 5 corresponds to p = 2.87 x 10~/
A significance of Z=1.64 corresponds to p=5%
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- The Profile Likelihood (“PL")

The best signal 1 =0.3 >1.270

i ~0, g small

Entries: 1

Entries: 0

Median =

Asimov =4.1575
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" PL: test t under BG only ; f(q, | Ho)

0=0.15—0.60

) Profile Likelihood demo (C) Ofer Vitells 2009
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" PL: test t under BG only ; f(q, | Ho)

) Profile Likelihood demo (C) Ofer Vitells 2009

L(b) T

I Asimov=4.1575 - | Entries: 3

30 ; ; L Entries: 0

Median =

Asimov = 4.1575
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" PL: test t under BG only ; f(q, | Ho)

=
Il
-

) Profile Likelihood demo (C) Ofer Vitells 2009 FEX)
File
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" PL: test t under BG only ; f(q, | Ho)

0=0.6-2.60

) Profile Likelihood demo (C) Ofer Vitells 2009

Signal
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" PL: test t under BG only ; f(q, | Ho)

1=022—->1.1o

) Profile Likelihood demo (C) Ofer Vitells 2009
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" PL: test t under BG only ; f(t, | Ho)

0=0.11—0.40

) Profile Likelihood demo (C) Ofer Vitells 2009
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) Profile Likelihood demo (C) Ofer Vitells 2009

0=031-1350

" PL: test t under BG only ; f(q, | Ho)

3B —

30

Entries: 1735

Entries: 0

Median =

Asimov = 4.1575
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" PL: test t under BG only ; f(q, | Ho)

1=0.32—1.39

) Profile Likelihood demo (C) Ofer Vitells 2009

L(b) 13
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" PL: test t under BG only ; f(t, | Ho)

1=0.15— 0.660

. L)
L({ls + b)
(>0

More than 10° toy
MC experiments
are needed to
get the PDF

to the level of 50

g=0.43— Z=0.660
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Wilks Theorem

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses,
Ann. Math. Statist. 9 (1938) 60-2.

L(b)
L({L-s+b)

g, =—2In

e Under a set of regularity conditions and for a sufficiently
large data sample, Wilks’ theorem says that the pdf of the

statistic 4 under the null hypothesis approaches a chi- .
square PDF for one degree of freedom f (qo ‘ H o) = )(1

L(s+b)
e Same token q, :_2lnL([L-s+b) f(ql | Hl) ~ le
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" Wilks Theorem

L L(b
*For the test statistic qu = —<«In LEZ} 4y = — N L(,lAL(?-z )
g, =—2In l:(b)
L(s + b)

fla,1H)=x,

fa, | H,)=x
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4 I
The PDF of q under s+b experiments (H,)
Lb) L, L@IH) 5

g =-2In— - A
0 L({is + b) L(us+b| H) 0=1.04—43c

Entries: 15017:

Entries: 1

Median = 4.3065

Asimov =4.1575

| — 1 c—n |
2 14 16 18 20

gq=185—>72=430
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L(b)
L({is+b)

g,=—2In

Can we quantify
the sensitivity of an
experiment for
discovery?

Can we formulate

mathematically
the PDF of the

alternate hypothesis?

L)

L(b| H)

YL(as+b|H)

- PL: test q, under s+b; f(q,|H,)
>0
(i=0.83—3.60

q=129—>7=3.60
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: Expected Discovery Sensitivity

g,=—2In L) =—2In Lol H) /AL>O

L(fis+b) ~ L(As+b|H) 1=122-5.00

) Profile Likelihood demo (C) Ofer Vitells 2009

Entries: 15017

Entries: 1012

Median = 4.0679

Asimov = 4.1575

Melgian=4.07c

v
10°
10’
Signal
« >
O Bonly - 0 H
o8 3 S S T T ) I S A A B e, |y lhoabe Uy | 1y |y | L d
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(logscate ] —2hg0

q=25—>72=5.00
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*To estimate the median
sensitivity of an
experiment

(before looking at
the data),

one can either perform
lots of s+b experiments
and estimate the median
Qo.med ©OF evaluate q
with respect to a
representative data set,
the ASIMOYV data set
with U=1,i.e. x=s+b

L)

qo,med = qO(‘l’l: ‘LLA = 1):_2ln

0=1.00—4.150

Signal

uuuuu

L(b|x=x,=5+D)
L(as+b|x=x,=s+b)

" The Median Sensitivity (via ASIMOV)

n
L(1-s+b)
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: The Median Sensitivity (via

*The name of the

Asimov data set is

inspired by the

short story

Franchise, by Isaac
Asimov. In it,

clections are held by

selecting the single

most representative

uuuuuu

0=1.00—4.150

ASIMOV)

Entries: 15017

Entries: 1013

Median = 4.0687

ASIMOV=4.150

hhhhhhhh

voter to replace the

entire electorate.

L(b|x=x,=5+D)

EN ®) 10:40

¢ =1722—> 7, =415

L(b)

~g(ll=u =1)=-2In =—2In
Doaa = Gl =H, = 1) L(fs+b|x=x, =s+b)

L)
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Nuisance Parameters

* Normally, the background, b( & ), has an uncertainty which has
to be taken into account. In this case & is called a nuisance

parameter (which we associate with background systematics)
® The signal strength L is a parameter of interest

e How can we take into account the nuisance parameters?

max L(u,0) L(u,0
g, =—2log—2° =-2log ('uA A“)
g max L(u,0) L(u,0)

0,: MLE of L(us+b(0)),  f1,0: MLE of L(fis+b(6)

® The PDF f(q, |H ) is asymptotically not dependent on

the nuisance parameters, that’s a big advantage of the PL
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Asymptotic formulae for likelihood-

based tests of new physics

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727,
EPJC 71 (2011) 1-19

Significance test using profile likelihood ratio

Systematics included via nuisance parameters

Distributions in large sample limit, no MC used.

http:/ /arxiv. org/abs/ 1007.1727v2

N ) . o ..
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Asymptotic distributions of q, (=t,)

° .
WllkS 1 The factor half due to the

O ~ — 2 one sided [ >0
qo X [H. Chernoff, Ann. Math. Stat.

2 25, 573578 (1954)]

— L I 1 |
f(q0]0) = 50((1”) . 5 —10/2

227 \/q0

* Walds  f(qolu’) ~ X3 (A = 25

V (qoldata) = Z
qo|Astmov = p's + b) = med(2)
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Application to HEP:
Expected Higgs sensitivity at 14 TeV

Luminosity [fb'1]

-
o

significance
! ' 13
. ATLAS 12
H- vy 11
8 H— ZZ* — 4l
H- 1t 10
7 H—> WW - evuv 19
5 18
L-PHYS-PUB-2009-063 17
5
16
4 15
3 4
, 3
W °
1 i, 1

120 140 160 180 200 220 240 260 280 300
m,, [GeV]
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Application to DM:
WIMP Discovery Potential with XENONZ100O

* By testing the background only hypothesis and trying to reject it, we can discover WIMPs
with the PL method

% This is an illustration with 100 days of XENON 100

% SUSY contours take latest LHC results arXiv: 1102.4585

significance
Y T T 7

e
A\ \ ILLUSTRATION

-45 " : CMSSM (Buchmueller et. al..)

10' 10° 10°

Mass [GeV/czl
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Discover WIMPs with PL

¥ An illustration showing

the power of PL in

testing for Discovery @ 06
7))
S 0.4 ¢ ) ° ° oo
* WIMPS (squares) are . 4, o0,
injected into a BG g
sample. .
* By removing events -0.40-
and check the A(p—value) -o.sf
we can score events -0.8,

% The colors represent
significance of the

cvents
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The Look Elsewhere Effect
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Look Elsewhere Effect

°Is there a signal

here?

70




: Look Elsewhere Effect

°Obviously

@ m:30 70

*What is its ol

significance? L ¢
* What is your test st

StatiStiC? 30|

L(b) 20} T &
qﬁx,obs = _2 ln A . I )%L
L(fis(m = 30)+ b) v ﬁg

0 10

>0
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: Look Elsewhere Effect

*Test statistic

q =-2ln—— L(b)
oot L(As(m=30)+b) g G 5
,& > O 10'1; —ft_1H)
*What is the p-value? ; i - ix ! Ho
: pfix
° generate the PDF |
10 3
/g, | H,) ;
and find the p-value 10
0....5..t; 10 152025t
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Look Elsewhere Effect

*Would you ignore
this signal, had you

seen 1it?

< n“ 1)

45
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35

30+

=]

25+

[62]

201

151

10

U‘!

0

b

q.* i

!}!ll -liiiﬂ“ii i |ii Im

]

%

il.i

29178c¢

0

20
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Look Elsewhere Effect

*Or this?

2.5730 A

I I I I I
50 60 70 80 90 100




Look Elsewhere Effect

*Or this?

50

451

40}

35

30

251

20

151

10

%‘?g Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011

T T
% % 3.51130
| | | |
0 10 20 30 40 50 60 70 80 90

100




Look Elsewhere Effect

*Or this?

50 T T
451 3.10626

°Obviously NOT!

—ANOK
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- Look Elsewhere Effect

*Having no idea where the
signal might be there are

two options

*OPTION I:

scan the mass range in
pre-defined steps and test
any disturbing fluctuations

(Do let the facts confuse you :-)

*Perform a fixed mass

analysis at each point

L(D)

1) =21
e B =20 sy + )

>0
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- Look Elsewhere Effect

*Having no idea where the
signal might be there are

two options

*OPTION I:

scan the mass range in pre-
defined steps and test any
disturbing fluctuations

(Do let the facts confuse you :-)

*Perform a fixed mass

analysis at each point

L(D)

1) =21
e B =20 sy + )

>0
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- Look Elsewhere Effect

*Of course the real signal
might split in two
windows
*The scan resolution must
be less than the signal
mass resolution
Assuming the signal can
be only at one place, pick
the one with the smallest
p-value (maximum

significance)

L(u=0)

*This is equivalent to éo = qo(ﬁ@) = —-2log

leaving the mass ﬂoating L('uﬂ m)

Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011

_ max[q() , fix (m)]

>0




: Look Elsewhere Effect

*Having no idea where the

signal might be you would

T T T T T T T T T

allow the signal to be a5k 310626

anywhere in the search 0

35

range and use a modified .

25

test statistic

20

A A L(b) 15
qﬂoat obs (‘LL’ m) = _2 ln ~ A 10+
’ L(us(m)+ b)
5
*The p-value increases ol
because more possibilities " |
4 |
are opened ~4035 | |
oo | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
M

] {,, Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Look Elsewhere Effect

* The test statistic Clﬂoat’obs(,u =0)=q,=¢q,(m)=-2In

has a special feature: It has a

L((1 = 0)-s(m)+b)

L({s(771) + b)

nuisance parameter which is
not well defined under the

null hypothesis (m) - _
*The null hypothesis PDF 4

a1 H,)

does not follow a Chi—squal’ed1 o2l

with 1 or 2 dof

*There are multiple minima _ |

depending on the size of the

search range

’ ) “Il Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Look Elsewhere Effect

*We can now ask the question: Assume
the Higgs is observed at some mass m
what is the probability for the
background to fluctuate locally

at the observed level (or more)
@ L(b)

n
L(fis(m = m)+ b)
*We can calculate the following p-

value

-1

10 ¢

5 10 15 20

pn=], S H)dq, <p,, =] [4,,|H)dq,,

St
% float,obs _f(tﬂoat | HO)

—f(tﬁX | Ho)

25 30

trial# =

th f(qﬂoat | HO)dqﬂoat

J, f(q, | H,)dg,,

A,l Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Upcrossings

LH=0)_ max|g,(m)]

d, = q,(m)=—2log———
b L(f,my — m

® Upcrossings: points where the q,(m) values become larger

then some u are called upcrossings

max[q, ()]

upcrossings

Excursion set

................................ e
e The probability that the global maximum is above the level u

is called exceedance probabih’t)/

® Excursion set, is the set of m with a probability above the level u

o p-—valueof q,= P(max[q(m)] > qobs)

'fi* ey Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Trial factors for the look elsewhere effect in high

energy phyS|CS (arXiv:1005.1891)
Eilam Gross and Ofer Vitells Eur.Phys.J.C70:525-530,2010

VT T T T T T T T T T IR B Davies, Hypothesis testing when a
% 40f 1 nuisance parameter is present only
S 30l I | under the alternative.
E Biometrika 74, 33—43 (1987)]
»w 20} .
g —u/2
% 107 E[N =N,
R The only unknown is NV, which
5 can be estimated from the
] average number of upcrossings
t,(m) /\ at some low reference level
u b £ ] (with just a few MC tosses)
60 80 100 120
_ uy/2
m N, = <Nu0 >e ’

P(éo > u) < E[Nu] + P(qo (O) > u) The p-value can then be

| <= estimated by Davies’
—u/2 2

=Ne" +—P(% >u) formula
1 2 1

) {71 &dam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Calculate the asymptotic trial factor

Trial factors for the look elsewhere effect in high
energy physics

Eilam Gross and Ofer Vitells Eur.Phys.J.C70:525-530,2010

® We show (arXiv:1005.1891) that the trial factor can be
approximated by

tratal# = Pfloat I+ \/z <N > Zygig

where <N>=E[N ] is the average number of

upcrossings of q=-2InL in the fit range (~Range/Resolution)

e We find R
ange z,

traial # ~ .
Resolution

'fi* »n Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




2-D example: lceCube search for astrophysical
neutrino point sources

Estimating the significance of a signal in a multi-dimensional search.
Ofer Vitells & Eilam Gross, arXiv 1105.4355 submitted to Astroparticle Physics

IceCube looks for neutrino sources,
2-D Search over the sky (6,),

Test statistics is denoted by q,

L(1,(0.9)=0)
(n, = 0)=—2In
Aot L(.(6,6))

Here there are 2 parameters which
are undefined under the null hypothesis

» Signal parameters can also include
SO energy and time, not considered here

J. Braun, J. Dumm, F. De Palma,
_ C. Finley, A. Karle, and T.
(3 Montaruli,
) Astropart. Phys. 29, 299 (2008);
()h[arX|v 0801.1604]

ng, La Palma, June 2011




2-D example: search for neutrino sources
(lceCube)

Properly covering
the whole sky

requires a grid of
~10002 points

.
=]

025}

02r

0151

01rf

0.058

-0.05

01f

0151

02F

0251

02 02 015 01 006 0 005 01 015 02 025

IceCube simulated background data Significance map
(1 ygar) 67,QOO events, | q,(8,0)
provided by Jim Braun & Teresa Montaruli

A,l Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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The case of n sighal nuisance parameters

e The upcrossings formula is a special case of a more general result which
gives the expectation qf the Euler characteristic qf the excursion

set of a random field over a general n-dimensional manifold

E[p(4,)]= iwdpd (u)

® Here:

A, is the excursion set of the field above a level u (set of points where
qo(0)>u)

(P(A,) is it’s Euler characteristic

P, are ‘universal’ functions (depend only on the level u and the type of

distribution) e.g. for a chi? field with s
Ciick to LOOK INSIDE! degrees of freedom:

R.J. Adler and J.E. Taylor, Random Fields (2007),

Random Erelds
and Geometrv

po(u)= P(Zsz >u)
P, (1) = 3 57D2 pul2

Py ) = u e [ — (s~ 1)]

s 7] {,1 Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Euler characteristic

e Number of disconnected components minus number of ‘holes’

¢=1 ¢=0 @=2

Name Image Euler characteristic

WIKIPEDIA
The Free Encyclopedia

Interval ————e 1

Euler characteristic

From Wikipedia, the free encyclopedia N O .

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler-Poincaré ‘

characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way itis bent. ltis |5,
commonly denoted by 7 (Greek letter chi).

The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the o ( : \ .
Platonic solids. Leonhard Euler, for whom the concept is named, was responsible for much of this early work. In modern mathematics, the Euler “\w)
characteristic arises from homology and connects to many other invariants. -
6 7 (Product of two circles) ‘ ) 0
\(
Double torus. 2
P~

%@ Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011



Euler characteristic Elo(4,)]=Y %, p, ()

/\—/'

In 1 dimension with The general n-D case,

1 paramter of interest s parameters of interest,

1 signal nuisance parameter n S;S\anal nuisance parameters

_ — Euler characteristic of the
¢(Au) B Nu " 1[q°(0)>u] 0 n-D manifold
_ 2
E[@(A)]=E[N,1+P(q,(0)>u) p,(u)=P(x. >u)
(Davies’ Bound) p,(u) = u e [u - (s— D]

In general for high-level excursions  E[¢(4, )] — P(max[q,(60)]=u)
(When E ’

(p(Au )] <1 ) [J. Taylor, A. Takemura, and R. J. Adler, Ann. Probab. 33, 4 (2005) ]

}‘,, Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




To find, say, prob(max[q,]>30)

All there isto do is
cut at two low values of u
say u=0,1

and find the Euler characteristic

Excursion set

(u=1)

025} | ‘ 4 f >>>> - ‘o .‘ o

02} Oa ’ i DQJC%S? O

015} ﬂo o ag o &O @ 1
01} Q 6 ) . . Q . D Q
DDZ OO 0. o ) ; ? Q
.005@ DO o ¥ D ) <O ¢ ‘
.0‘1;3"‘; Q g 0 9 &
015 - o g O %O ’ O
02} \\h/() Q o @) Qag |

O

q,(0,9)

Significance map

e Pl Graes—\strostatistics and Data Minir

0.058

017

0157

021

0251

02 02 015 01 O05 0 005 01 015 02 025



Calculation of the Euler characteristic

0218

B ° Usually we have q(0) calculated on a grid
of points

» Calculation of the E.C. is straightforward:

* ¢ = #points - #edges + #faces

222222

» Generalizes to higher dimensions

-0.224

-0.226

¢ = 18(points) — 23
(edges) + 7(faces)

=2

m Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




2-d example: search for neutrino sources

(IceCube) )
For a chi? field in 2 dimensions (n=2,s=1): E[lp(4)]= Zded (1)
d=0

p,(u)=P(x >u)
p (u) — u(s—l)/Ze—u/Z
1

p,(u) = (5722 2 [ —(s—1)]

¢(Au)] — %P(}f > u)+(j\/‘1 _|_g\/'2\/;)e—u/2

Estimating the significance of a signal in a multi-dimensional search.
Ofer Vitells & Eila 1105,4355 submitted to Astroparticle Physics




2-d example: search for neutrino sources

ICe(;or a chi? field in 2 dimensions: From 20 bkg. Simulations:
E[p(A4)]= _P(Zz > )+ (I, +W2\/;)e_u/2 (@,)=33.5%2
2 (g,)=94.6+1.3

Estimate E[@] at two levels, e.g. 0 and 1, and solve 0
for Ny and 9V, N, =33+£2




2-d example: search for neutrino sources
(IceCube)

1
2 —u/2 N, =332
Elp(A4)]==P(x" >u)+ (N, + N,Nu)e™ 1
2 ,=12343
1(’_)0 E 101 L.
10~1_ ‘ 100 i .."~..,A~’~~.
i P-value o'l
. 1072
10
~200,000 random 107}
10t background simulations
107k
10°¢
5 110 1I5 210 215 3;0 35 5J

e.g.: P(max q,>30) = (2.5 + 0.4)x10* (estimated)
E.C. Formula : (2.28 £ 0.06)x104

Estimating the significance of a signal in a multi-dimensional search.
Ofer Vitells & Eila s, arXiv 1105,4353 '




submitted to Astroparticle Physics

Estimating the significance of a signal in a multi-

S | R dimensional search.
ICI n g Ofer Vitells & Eilam Gross, arXiv 1105.4355

* Exploit the azimuthal angle symmetry 025}
to reduce computations: 02y
P(AUB) = (A)+9(B)—p(AnB)|
Divide to N slices:
@ =Y [p(slice,) -p(edge, )]+ @(0)

E[@]= N X (E[@(slice)] - E[¢p(edge)]) + E[¢(0)] ]

40 “slice” simulations

E[o(slice)] = (6 £ 0.5)+ (6.7 £ 0.8)\u )e ™" In this example

E[p(edge)] = (4.4 +0.2)e ™" ¢(0)=0
¢(edge)=2

N, =28%9  Consistent with full sky d(slice)=6

» 5{ Eilam Gross, Astrostatistics and Data Mining, La P
/am]

Ez =120+14
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EXCLUSION

%% Eilam Gross, Astrostatistics and Data Mining, La
Palma, June 2011 /




CASTLING

Castling the Hypotheses

.1

ALTERNATE
—_—

® Reject H, in favor of H; — A DISCOVERY

L(b(éb))
qPL =—-21n R
: L(fis+b(9))

5;, . MLE of L(b(0)); [1,0: MLE of L(us+ b(6))

.' Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011



CASTLING

Castling the Hypotheses

11

ALTERNATE

® Reject H, in favor of H, — Excluding H,

. L(b(éb)) . L(s + b(és+b))
LT _ZIHL(ﬁs+b(é)) — ¢ =20 L(fis+ b))

) .. i MLE of L(K(6)),L(s+b(0)); [1,0: MLE of L(us+ b(6))

b)

.' Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011



Exclusion

® Test the H hypothesis, <n>=ps(my)+b

0]

° H=— is the signal strength which is a parameter of interest.
SM

L

LUs + b(és+b))
PL
g =-2In - -
; L(fis+b(6))

>>

6 . MLE of L(s+b(0)); [,6: MLE of L(us+ b(8))

1 Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Wilks Theorem

® We use the Profile Likelihood

max L(u,6) L(1.0
- max L(1.0) L(f1,6)

® The pdf f(q, |H,) is asymptotically not dependent on the

nuisance parameters, that’s a big advantage of the PL

* (Note, we test the signal hypothesis (H ) trying to reject it in
order to establish an exclusion at the 95% CL.)

’ ) “Il Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Exclusion sensitivity

® Here you want to find the sensitivity of the experiment to

exclude some signal s with a strength U

Faph) medanld)

/

{obs at

80
(ARa i hrg'an)



Exclusion

. L( s+ b(és+b))
PL

g =-2In - A

: L(fis+b())

® By testing the signal hypothesis (H,) we can construct a 95%
confidence (frequentist) interval
Cl: [0, uy:] (CI: Confidence Interval toru =i)

SM

° It t1y-<I the SM Higgs (H,)
is excluded at the 95% CL.

A SUSY Higgs (with a smaller signal strength)
can still be hidden there. ..

B == Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Exclusion

o
o L(us + b(és+b))
g =-2In—— .
: L(fis+b(6))
o

Tevatron Run 11 P1elm11na1y L<82fb"

2 10 evatron R
o [f Mo 5<1 the SM Higgs (H,) % i L/El
is excluded at the 95% CL. § L

A SUSY Higgs (with a smaller signal strength)
can still be hidden there. ..

[E—

Combined CDF and D0 Upper Limits on | | _ Mach7,2011 |
Standard Model Higgs-Boson Production 130 140 150 160 170 180 190 200

2
arXiv:0901.2427 [hep-ph] my, (GeV/c?)
arXiv:0811.3458 [hep-ph]




The Euivalence of CL and p-value

® Test the 7, (us(m,)+b) hypothesis

® Find the p-value under H, pu(mH) = Lwobs f(qu | Hu)dqu
° It p,(my)<5% the H, hypothesis is rejected

® Find u95(my) such that p -(m,)=5%

* Had the signal existed, 95% of the intervals [0, u95(m,,)] would
contain its true strength, u(m,)<p95(m,,)

® u95(m,,) is an upper bound on u(m,) @ 95% CL
® It u95(m;)<I, a SM Higgs with a mass m,,

is excluded at >95% CL=> P Y, —]-CL
® (L isthes+b CL hence CL=CLs+b

N0 yien  Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Asymptotic formulae for likelihood-

based tests of new physics

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727,
EPJC 71 (2011) 1-19

Significance test using profile likelihood ratio

Systematics included via nuisance parameters

Distributions in large sample limit, no MC used.

http:/ /arxiv. org/abs/ 1007.1727v2

N ) . o ..
U pen  Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




The one-sided test statistics

http://arxiv.org/abs/1007.1727v2 (Cowan,,Cranmer,E.G.Vitells)

—21n L('u’é“)° o<y
.= L6’ pe=], fa,1mdg,
0 > u
1,
e Wilks flg, 1w~ E%
: N L r _, .
flaulp) = Sh(qn) 2 or \/TF‘. In/?
i ~\/ M

e Wald f(qu|u|)~%2(A:(u;§t) ]

' - 2
f((Il‘:”,) — (lI — ) ()(ql)-i— l I 1 eXP _l (\/q__ (/1 _/l',)>
: ) ; 2 /2 P H o

vV

01 'vn  Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Test of Asymptotic formulae

2
Distributions of g, here for u that gave p, = 0.05. , /q 1os — 1.64

o' medianfg 10}

.

0 5 10 15 20

“mm ke
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Statistical tests and Power

® Detine a critical region &, say
& =5%
® If the observation q,, ;. is in this

region,the H  hypothesis is rejecte
at the 95% CL

® The edge of the critical region is
Qo5 OT Gy up > (there pu=0q)

* At the edge, O <>CLsb

® Prob (reject H, |[H ,)=5%

® Power of the test
Power = Prob (H,|reject H )

® If we solve for 9t up =9t obs then
CLb<po

WCET
-

=3 1

— critical region

I,~\
\
\
\
\
\

f(q,10)

qp95

A ¥ Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011




Statistical tests and Power

® Here the two hypotheses (signal and BG-

only) can hardly be separated,
stb~b=>s~0

® The power is small

— critical region

* You might exclude s~0

° To protect it: N Read
ex nea

® CLs=CLsb/CLb J phys.G28:2693-2704,2002
e At the edge of the critical region
CLs=p’ = o /power> O =Py

®* Anew U up is defined correposnds to the

new p, MU =CLs=> q MU ’up<q U up et
® The PCL: redefine U up so that the power is q

no less than 16% €
qp’95

® In both cases U "up> U up (weaker limit)

qp95

y ) {,1 Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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Power Constrained Limits

Cowan,Cranmer,E.G.,Vitells
arXiv:1105.3166v1 [physics.data-an]

20 T T T T

1 b only expectation
> 10
8
Quoted ' 6 S ———
observed 4 — —
limit This is the observed limit
PCL 2 Without PCL,

0
100 110 120 130 140 150 160 170 180 190 200

My
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WIMPS Detection with XENON

Y .
J Grid

e

S2 S2 T o 2 T .
S1 S S ) Sensitive T T T dri
L ' volume /
S1
/"// Y
N g 7
WIMP

Leff is crucial, it sets the scale
between S1 and the recoil energy

| Astrostatistics and Data Mining, La Palma, June 2011



P.E. / bin

P.E. / bin

ER/NR Discrimination

* In this plot ®°Co (blue) and AmBe (red)
* ER/NR discrimination via S2/S1 ratio

200 gamma
150 32
100+
50 St drift time ]
. R "\
0 20 40 60 80 100 120
time [usec]
200 ' '
WIMP (here neutron)
150
100} 82
50 ST Grift time L -
0 ‘ ‘ 1= -
0 20 40 60 80 100 120
time [usec]

10

20

30 40

E [keVr]
50 60 70

(cS2/cS1)
£ o

10
[
)
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N

-
TTJ
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First published results of XENON100

* Observing no events in the signal region, the limit on the WIMP mass was obtained, based

on an expectation of 2.3 signal events in the signal region

(90% CL)
* The Leff uncertainty was taken into account by deriving two limit curves, one tighter than
the other.
F oxsf o ' '
03E ©
025E T
().2':; " Agede 2 = :
PRL 105, 131302 (2010) oisf * - E
,\: 1073;54 ‘ . ——— E—— U.l;'—. ------------ : —‘i
i il 'a QD;\\L-\ 0.05;_ /“/,— _i
.510-”.— . ;.Q.é[" - a2 2 a2l 2 NP PP | =
§ e Z’ Nuclcarl]gccoil Equivalent Energy ]l‘lfé\/m]
2107\ |
104 ::Z " | Trotta et al. CMSSM 95% CL
['rotta et al. CMSSM 68% CL
10 SR T ol At a WIMP mass of 55 GeV the limit
(0L XENONION Lower90% CLLet on S| WIMP-Nucleon cross section
. is 3.4x10%4cm? at the 90% CL
107

10 T 100 1000
Mass [GeV, /02]

n {,, Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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A Likelihood Approach to XENON10O Data

XENON100 PRL 105, 131302 (2010)

() 2 4 6 8 10 12 14 16 18 20 22 2
IR R LR AR ARt AR RS LR R R e e
0.8
0.6
04
0.2

w
:

B

The traditional method for analyzing

Acceptance

Dark Matter data defines a signal region

Lololod

lllw}u_; T T

via a hard cut

log, (SS1)
- D> X W
T
-

Such a hard cut introduces sensitivity E

- . . A A A
0 5 10 15 20 25 30 35
Nuclear Recoil Equivalent Energy [kc\"'u|

reduction and boundaries uncertainties

In the traditional method uncertainties are not embedded in the

method, leading sometimes to ambiguities (Leff)

The traditional methods do not make full use of background information

that exist (via calibration, MC or theory)

Basing the analysis on zero observed events (e.g. maximum gap) does not

enable a discovery.

e are not in this “game” for exclusion.
HE A 120

m Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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The Profile Likelihood Approach

* Astrophysica] uncertainties are naturally « Manzur (2010) ’

built into the model.

g 6000
& -
¥ The basic idea is to use existing I
5000
measurements such as ®°Co gamma :
calibration and AmBe neutron calibration as 4000—
control measurements in side bands. ool
% The calibration data is used to measure the 2000~
fraction of Gamma background and oooE-
expected signal in a given band -
00 ! 2 4 6 8 10 14 16 18 20 22 24
. . . S1 [PE]
% Uncertainties in the energy scale due to Lefr
are also taken as side band measurements 3 O Ao gy [ T
with a wide uncertainty in the low recoil 0350~ Bemabei 2001) | -
E Akimov (2002) E
energy range 03 v Aprile (2005) T ]
oast. * Chepel (2006) ’ I .
““E u Aprile (2009) —4 ] 0l 1 I{ =
: 1 =

e.g. Vesc is taken as a measurement with
Vobs—544 km /s (498km/s < vesc < 608km/s) ost
(Smith et. al. arxiv:astro-ph/0611671) 5 S e

10 100
Nuclear Recoil Equivalent Energy [kr.Vn ]
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The Profile Likelihood Approach

o _ par of interest
unknown total BG

D.
o
el

IIIIIIII
o
o
O..o.o

L = (0, Ny, €g, €, Legg
X Ly(es) x La(es) nE
X$4(£eﬂ‘) X g{,(’ljesc). = 3

Illlllllllllllll

0 LA [ 1 l’ 1 L1 ; L l'l L L Ll LI L L L L l. l‘ LA 1 - LA 1
0 2 4 6 8 10 12 14 16 18 20 22 24
S1 [PE]

‘11[][ T T T rTrnrTT

5] Ame'odo (ZIOOO')
Bernabei (2001)
Akimov (2002)

v Aprile (2005)

4+ Chepel (2006) ) .

= Aprile (2009) | _ 1 I{

e Manzur (2010)

o(my) - WIMP cross section
&b - fraction of BG
s - fraction of signal
Vesc - €scape velocity
Leff - energy calibration

Jlllllllllllllllll

10 100
Nuclear Recoil Equivalent Energy [k:V" ]
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The Profile Likelihood Approach

* The Profile Likelihood ratio protfiles all nuisance parameters

max & (0; Left, Vescs Np, €5, €p)

/\(()’) _ o fixed
max .Z (o, Lefr, Vescs Np €5, €p)

* The upper limit 0"P(my) on the cross section O for a given
WIMP mass my is found by testing the signal hypothesis and find
the maximum cross section, 0, which rejects the signal

hypothesis at the 90% Confidence Level

* i.e. find the O(my) such that the probability to reject the signal
hypothesis when the signal is true <10%. Obviously very high

cross sections are excluded in the absence of observed events.

) {,1 Eilam Gross, Astrostatistics and Data Mining, La Palma, June 2011
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The Profile Likelihood Approach

The XENON100 Collaboration
Likelihood Approach to the First Dark

Matter Results from XENON100
arXiv:1103.0303v1 [hep-ex] 1 Mar 2011
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* Applying a likelihood ratio method
to XENON10O0 first data, results in

an improvement of the limit
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The Profile Likelihood Approach

The XENON100 Collaboration
Dark Matter Results from 100 Live Days of

XENON100 Data
arXiv:1104.2549v2 [astro-ph.CO] 29 Apr 2011

2 Applying a likelihood ratio method

to XENON100 first data, resultsin ~ 1°E E
an improvement of the limit 0w f_ _i
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* The Profile Likelihood analysis has 2 [
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Summary

The profile likelihood is used successtully in both HEP (LHC) and
Astroparticle (XENON).

Asymptotic distributions exist for both the null and the alternate

hypotheses and save lots of computing time

Asimov data sets are used to estimate median discovery and

exclusion sensitivities

Lots of progress in related issues for LHC

¢ Look Elsewhere Effect — 1D

* CLs=2>PCL

Look Elsewhere Effect is also applicable to search for signals in

the sky (in its 2-D approximated form). Formulae were derived

which might save enormous computing time.
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BACKUP
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Nuclear Recoil Scale (Leff)

* The WIMP interacts with Xe nucleus
-->Nuclear recoil (NR) scintillation

* [3 and s generate Electron Recoils

* Absolute measurement of NR scintillation yield is ditficult, in particular at

low recoil energies (below 5-6 keVur)

_ Ly(E,)
57 Leﬁ (Enr) -
% Measurement is done relative to °>’Co 122keV Ly(122KeV,))
Quenching of scintillation
. . . ' ield for 122 KeV gammas due
* Leff is crucial, it sets the scale Signal (pe) el (0.58 0 KV/om)
between S1 and the recoil energy E = 51 S 1
Nuclear recoilgnergyLy(122K€‘ce) Sm, Leﬁf
Field Correction See—0.58 122 KeV |n pe yleld for NRs due ‘
Sar=0.95 (~2.2 pe/KeV) to field (0.95 at~0.5 KV/cm)

Relative scintillation efficiency of
NRs to 122 KeV gammas at zero
field
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