Hierarchical modeling

David W. Hogg Center for Cosmology and Particle Physics, New York University

2011 April 2

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Polemic: Sometimes it is the *prior* that we seek

- \triangleright We know about thousands of exoplanets, each of which has a period T.
- \triangleright Do we care about any particular planet's period?
	- \triangleright Yes, sometimes: We might want to schedule observations, or estimate habitability.
	- \triangleright No, usually: We want to understand the processes that generate the distribution of periods.
- \triangleright We want to know the true distribution from which periods are drawn.
- \triangleright This true distribution is what we should be using as the *prior* in every individual planet inference.

AD A REAKEN E VAN

 \blacktriangleright Can we parameterize and infer a *prior*?

Conclusions

- \blacktriangleright Hierarchical modeling is simple, powerful, and generic.
	- \triangleright Some of you are using it already (some without knowing it).
- \triangleright We have obtained powerful results with it.
	- \triangleright eccentricity distributions for exoplanets
	- \triangleright classification: quasar target selection
	- \triangleright prediction: photometric redshifts
- It is a form of *deconvolution* and we shouldn't be afraid of that.

ADD KAD KEX (EX EN 200)

Principal collaborators

- \triangleright Jo Bovy (NYU \rightarrow IAS)
- \blacktriangleright Joe Hennawi (MPIA)
- \blacktriangleright Dustin Lang (Princeton)
- \triangleright Adam Myers (UIUC \rightarrow Wyoming)

A DIA K PIA A BIA K BIA K DA A CA

- \blacktriangleright Hans-Walter Rix (MPIA)
- \blacktriangleright Sam Roweis (deceased)
- ▶ SDSS-III Collaboration

Eccentricity estimation

 \triangleright Single-point (e.g., maximum-likelihood) eccentricity estimates are biased high.

- ► Shen & Turner (2008); others
- \triangleright comes from model freedom: higher $e \rightarrow$ greater model freedom
- \triangleright (recall continous model complexity)
- \triangleright Most MCMC or Bayesian approaches use demonstrably wrong flag priors on e.
- \triangleright What priors should we be using?
	- \triangleright even if we use a justified prior, single-point estimates will always be bad

A DIA K PIA A BIA K BIA K DA A CA

 \blacktriangleright It matters!

Eccentricities

K ロト K 倒 ト K 差 ト \equiv \rightarrow \equiv $\circledcirc \circledcirc \circledcirc$

Eccentricity inference, usual story

$$
\omega_n \equiv (\kappa_n, T_n, \phi_n, e_n, \varpi_n)
$$

\n
$$
v_{nj} = V_n + g_{\omega_n}(t_{nj}) + E_{nj}
$$

\n
$$
-2 \ln p(\mathbf{D}_n | \omega_n) = Q + \sum_{j=1}^{M_n} \ln(\sigma_{nj}^2 + S_n^2) + \sum_{j=1}^{M_n} \frac{[V_n + g_{\omega_n}(t_{nj}) - v_{nj}]^2}{\sigma_{nj}^2 + S_n^2}
$$

\n
$$
p(\omega_n | \mathbf{D}_n) = \frac{1}{Z_n} p(\mathbf{D}_n | \omega_n) p_0(\omega_n)
$$

イロト イ団ト イミト イミト・ミー りんぐ

where $p_0(\omega_n)$ is some "uninformative" prior like flat in some parameters, $1/x$ in others.

Eccentricity inference demo

 \equiv \equiv 目 $\circledcirc \circledcirc \circledcirc$ 4 ロト 4 伊 ト 4 \mathbf{b} \mathbf{p} -4

Eccentricity inference demo

 \equiv line of the controller o 目 $\circledcirc \circledcirc \circledcirc$ < □ > < □ > \sim \mathbf{b} ϵ

Eccentricity distribution inference (1008.4146)

What if you think there might be some family of priors $p(\omega_n|\alpha)$ parameterized by some α ; could you infer this?

$$
p(\{\mathbf{D}_n\}_{n=1}^N \mid {\{\omega_n\}_{n=1}^N}) = \prod_{n=1}^N p(\mathbf{D}_n | \omega_n)
$$

$$
p(\{\mathbf{D}_n\}_{n=1}^N | \alpha) = \prod_{n=1}^N \int d\omega_n p(\mathbf{D}_n | \omega_n) p(\omega_n | \alpha) .
$$

This is still a likelihood, but we have marginalized out the properties of every exoplanet—these are "nuisance" parameters in this formulation.

-
-
-
-
-
-
-
-
-
-
-

-

Eccentricity distribution inference (1008.4146)

Say all you get, for each exoplanet, are K samples drawn from an uninformative prior. What then? Importance sampling.

$$
\rho(\omega_n|\alpha) = \frac{f_{\alpha}(e_n) p_0(\omega_n)}{p_0(e_n)}
$$

$$
\int d\omega_n p_0(\omega_n|\mathbf{D}_n) F(\omega_n) \approx \frac{1}{K} \sum_{k=1}^K F(\omega_{nk})
$$

$$
\rho(\{\mathbf{D}_n\}_{n=1}^N|\alpha) \approx \prod_{n=1}^N \frac{1}{K} \sum_{k=1}^K \frac{f_{\alpha}(e_{nk})}{p_0(e_{nk})}
$$

K ロ > K @ > K 할 > K 할 > → 할 → 9 Q Q*

Eccentricity distribution model (1008.4146)

Use a non-parametric (read: very highly parameterized) function for the eccentricity distribution): Step function with M steps.

$$
f_{\alpha}(e) = \sum_{m=1}^{M} \exp(\alpha_{m}) s(e; \frac{m-1}{M}, \frac{m}{M})
$$

\n
$$
s(x; L, H) = \begin{cases} 0 & \text{for } x < L \\ (H - L)^{-1} & \text{for } L \leq x \leq H \\ 0 & \text{for } H < x \end{cases}
$$

\n
$$
\sum_{m=1}^{M} \exp \alpha_{m} = 1
$$

\n
$$
p(\alpha) \propto \delta(1 - \sum_{m=1}^{M} \exp \alpha_{m}) \exp(-\frac{1}{2} \epsilon \sum_{m=2}^{M} [\alpha_{m} - \alpha_{m-1}]^{2})
$$

Note Gaussian-processes-like regularization.

Distribution inference demo: ML estimates—bad

三 つへぐ イロト イ部ト イミト イモト

Distribution inference demo: Good!

K ロ > K (日) X (日) X (日) X (日) OQ

Polemic: Deconvolution

- \triangleright We can infer the true distribution even with extremely noisy measurements.
- \triangleright This is an extreme form of *deconvolution*.
	- \triangleright (but not Extreme Deconvolution (tm))
- ▶ Depends crucially on having full—and accurate—likelihood or posterior information.

A DIA K PIA A BIA K BIA K DA A CA

 \blacktriangleright Performed by "forward modeling".

Distribution inference demo: Small samplings

- 違っ イロト イ部ト イミト イモト $\circledcirc \circledcirc \circledcirc$

Distribution inference demo: Small sample

그 모 イロト イ部ト イミト イモト $\circledcirc \circledcirc \circledcirc$

Distribution inference demo: Still good!

イロト イ押ト イミト イヨト 一度 $\circledcirc \circledcirc \circledcirc$

Distribution inference demo: Truly hierarchical

 \equiv \equiv \rightarrow \equiv $\circledcirc \circledcirc \circledcirc$ 4 ロト 4 伊 ト 4 \mathbb{R}^2

Conclusions

- \blacktriangleright Hierarchical modeling is simple, powerful, and generic.
	- \triangleright Some of you are using it already (some without knowing it).
- \triangleright We have obtained powerful results with it.
	- \triangleright eccentricity distributions for exoplanets
	- \triangleright classification: quasar target selection
	- \triangleright prediction: photometric redshifts
- It is a form of *deconvolution* and we shouldn't be afraid of that.

ADD KAD KEX (EX EN 200)

Quasar target selection: setup

 \blacktriangleright 2.2 \lt z \lt 3.5 quasars can be used to measure the baryon acoustic oscillation in the Lyman alpha forest

K ロ > K 레 > K 코 > K 코 > 다로 → O Q Q →

- \triangleright SDSS-III BOSS
- \blacktriangleright quasars in this range look like stars in ugriz
- \triangleright This is a hard supervised classification problem.

What's wrong with typical classification algorithms?

- \blacktriangleright neural networks, boltzmann machines, support vector machines, boosting
- \blacktriangleright these are all *awesome*
- \triangleright they require that test data have the same statistical and error properties as training data
- \triangleright they require that all features be measured for all data points

A DIA K PIA A BIA K BIA K DA A CA

What's wrong with typical classification algorithms?

- \blacktriangleright neural networks, boltzmann machines, support vector machines, boosting
- \blacktriangleright these are all *awesome*
- \triangleright they require that test data have the same statistical and error properties as training data
- \blacktriangleright never truel
- \triangleright they require that all features be measured for all data points

A DIA K PIA A BIA K BIA K DA A CA

 \blacktriangleright never truel

XDQSO target selection (1011.6392): Method

- \blacktriangleright extreme deconvolution:
- \triangleright each data point samples the true density (in color space), convolved with that data point's own unique uncertainty profile
	- \triangleright an independent and unique convolution of the model for every data point

A DIA K F A SIA SHA SHA K DIA K DIA SHA

- \blacktriangleright like having as many classifiers as data points
- \triangleright model all this with mixtures of Gaussians for performance
- \blacktriangleright likelihood ratios (star vs. galaxy) are density ratios in the convolved model

XDQSO target selection (1011.6392): Results

XDQSO target selection (1011.6392): Results

 OQ \leftarrow

XDQSO target selection (1011.6392): why we are so good?

- \triangleright We use the errors correctly and account properly for missing data; we have a generative model.
- \triangleright That is true for both the training data and the test data.
- \triangleright We are extensible to new prior information or other data.
	- \triangleright GALEX
	- \triangleright UKIDSS
	- \triangleright variability
- \blacktriangleright Bovy
- \triangleright extreme-deconvolution (at code.google.com)
	- \blacktriangleright Bovy, Hogg, & Roweis (0905.2979)
	- \blacktriangleright it Just Works (tm)
	- \triangleright C code with Python and IDL wrappers / interface
	- \triangleright can handle large data sets with large numbers of dimensions
- ▶ SDSS-III BOSS core target selection

Polemic: Missing data

- \triangleright Most machine-learning methods hate missing data.
- Interpolation or data censoring (both very, very bad) are required.
- \triangleright Any model that properly accounts for *uncertainty* also properly accounts for *missing data*.
	- \triangleright Missing data is (extreme) uncertainty; uncertainty is (mild) missing data.

If you have a justified generative model $p(\mathbf{D}_n|\omega_n)$, you automatically deal with missing data.

XDQSOz redshift prediction (1105.3975)

- \triangleright Add redshift as a dimension to the photometric XDQSO.
- \blacktriangleright Add also GALEX and UKIDSS.
	- \triangleright Not full coverage? No problem!
- \blacktriangleright Model with extreme deconvolution again.
- \triangleright Condition model on available photometry and predict redshift.

A DIA K PIA A BIA K BIA K DA A CA

 \triangleright Not all bands measured? No problem!

XDQSOz redshift prediction (1105.3975): Results

 OQ

XDQSOz redshift prediction (1105.3975): Results

 OQ

A A B A B A B A A A A B A B A A A A

A EXA EXA EXAMPLE VOLCA

XDQSOz redshift prediction (1105.3975): Results

- \triangleright We have the most precise and accurate photometric redshift estimates for quasars in the magnitude and redshift ranges relevant to SDSS-III BOSS.
- \triangleright We can use all photometric bands where they are available, but don't need complete data.
- \triangleright Signal-to-noise of training and test sets do not have to be similar.
- \triangleright Makes great use of extremely low signal-to-noise $GALEX$ data in both training and testing.

Polemic: Don't convolve your data, convolve your model!

- \triangleright If you are uncertain about something (a redshift, a classification) so that you don't know which bin to put it in:
- \triangleright don't put a bit of it into each bin!
	- \triangleright That re-convolves your noisy result with the noise again.

-
-
-
-
-
-
-
-
-
-
-

-

- \triangleright Do put a bit of your *distribution model* into each bin.
	- \triangleright That is, convolve your *model* for the object with the uncertainty.
	- \triangleright Obvious, but easy to get wrong.

Conclusions

- \blacktriangleright Hierarchical modeling is simple, powerful, and generic.
	- \triangleright Some of you are using it already (some without knowing it).
- \triangleright We have obtained powerful results with it.
	- \triangleright eccentricity distributions for exoplanets
	- \triangleright classification: quasar target selection
	- \triangleright prediction: photometric redshifts
- It is a form of *deconvolution* and we shouldn't be afraid of that.

ADD KAD KEX (EX EN 200)