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Polemic: Sometimes it is the prior that we seek

I We know about thousands of exoplanets, each of which has a
period T .

I Do we care about any particular planet’s period?
I Yes, sometimes: We might want to schedule observations, or

estimate habitability.
I No, usually: We want to understand the processes that

generate the distribution of periods.

I We want to know the true distribution from which periods are
drawn.

I This true distribution is what we should be using as the prior
in every individual planet inference.

I Can we parameterize and infer a prior?



Conclusions

I Hierarchical modeling is simple, powerful, and generic.
I Some of you are using it already (some without knowing it).

I We have obtained powerful results with it.
I eccentricity distributions for exoplanets
I classification: quasar target selection
I prediction: photometric redshifts

I It is a form of deconvolution and we shouldn’t be afraid of
that.
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Eccentricity estimation

I Single-point (e.g., maximum-likelihood) eccentricity estimates
are biased high.

I Shen & Turner (2008); others
I comes from model freedom: higher e → greater model freedom
I (recall continous model complexity)

I Most MCMC or Bayesian approaches use demonstrably wrong
flag priors on e.

I What priors should we be using?
I even if we use a justified prior, single-point estimates will

always be bad

I It matters!



Eccentricities



Eccentricity inference, usual story

ωn ≡ (κn,Tn, φn, en, $n)

vnj = Vn + gωn(tnj) + Enj

−2 ln p(Dn|ωn) = Q +
Mn∑
j=1

ln(σ2
nj + S2

n ) +
Mn∑
j=1

[Vn + gωn(tnj)− vnj ]
2

σ2
nj + S2

n

p(ωn|Dn) =
1

Zn
p(Dn|ωn) p0(ωn) ,

where p0(ωn) is some “uninformative” prior like flat in some
parameters, 1/x in others.



Eccentricity inference demo
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Eccentricity inference demo
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Eccentricity distribution inference (1008.4146)

What if you think there might be some family of priors p(ωn|α)
parameterized by some α; could you infer this?

p({Dn}N
n=1 | {ωn}N

n=1) =
N∏

n=1

p(Dn|ωn)

p({Dn}N
n=1 |α) =

N∏
n=1

∫
dωn p(Dn|ωn) p(ωn|α) .

This is still a likelihood, but we have marginalized out the
properties of every exoplanet—these are “nuisance” parameters in
this formulation.



Eccentricity distribution inference (1008.4146)

Say all you get, for each exoplanet, are K samples drawn from an
uninformative prior. What then? Importance sampling.

p(ωn|α) ≡ fα(en) p0(ωn)

p0(en)∫
dωn p0(ωn|Dn) F (ωn) ≈ 1

K

K∑
k=1

F (ωnk)

p({Dn}N
n=1 |α) ≈

N∏
n=1

1

K

K∑
k=1

fα(enk)

p0(enk)



Eccentricity distribution model (1008.4146)

Use a non-parametric (read: very highly parameterized) function
for the eccentricity distribution): Step function with M steps.

fα(e) ≡
M∑

m=1

exp(αm) s(e; m−1
M , m

M )

s(x ; L,H) ≡


0 for x < L

(H − L)−1 for L ≤ x ≤ H
0 for H < x

M∑
m=1

expαm = 1

p(α) ∝ δ(1−
M∑

m=1

expαm) exp(−1

2
ε

M∑
m=2

[αm − αm−1]
2)

Note Gaussian-processes-like regularization.



Distribution inference demo: ML estimates—bad
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Distribution inference demo: Good!

0.0 0.2 0.4 0.6 0.8 1.0
eccentricity e

0

1

2

3

4

5

fr
eq

u
en

cy
p(
e)

300 stars / truth

0.0 0.2 0.4 0.6 0.8 1.0
eccentricity e

0

2

4

6

8

10

fr
eq

u
en

cy
p(
e)

300 stars / truth

0.0 0.2 0.4 0.6 0.8 1.0
eccentricity e

0

1

2

3

4

5

fr
eq

u
en

cy
p(
e)

300 stars / inferred distribution

0.0 0.2 0.4 0.6 0.8 1.0
eccentricity e

0

2

4

6

8

10

fr
eq

u
en

cy
p(
e)

300 stars / inferred distribution



Polemic: Deconvolution

I We can infer the true distribution even with extremely noisy
measurements.

I This is an extreme form of deconvolution.
I (but not Extreme Deconvolution (tm))

I Depends crucially on having full—and accurate—likelihood or
posterior information.

I Performed by “forward modeling”.



Distribution inference demo: Small samplings
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Distribution inference demo: Small sample
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Distribution inference demo: Still good!
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Distribution inference demo: Truly hierarchical
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Conclusions

I Hierarchical modeling is simple, powerful, and generic.
I Some of you are using it already (some without knowing it).

I We have obtained powerful results with it.
I eccentricity distributions for exoplanets
I classification: quasar target selection
I prediction: photometric redshifts

I It is a form of deconvolution and we shouldn’t be afraid of
that.



Quasar target selection: setup

I 2.2 < z < 3.5 quasars can be used to measure the baryon
acoustic oscillation in the Lyman alpha forest

I SDSS-III BOSS

I quasars in this range look like stars in ugriz

I This is a hard supervised classification problem.



What’s wrong with typical classification algorithms?

I neural networks, boltzmann machines, support vector
machines, boosting

I these are all awesome

I they require that test data have the same statistical and error
properties as training data

I never true!

I they require that all features be measured for all data points

I never true!
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XDQSO target selection (1011.6392): Method

I extreme deconvolution:
I each data point samples the true density (in color space),

convolved with that data point’s own unique uncertainty
profile

I an independent and unique convolution of the model for every
data point

I like having as many classifiers as data points

I model all this with mixtures of Gaussians for performance

I likelihood ratios (star vs. galaxy) are density ratios in the
convolved model



XDQSO target selection (1011.6392): Results



XDQSO target selection (1011.6392): Results



XDQSO target selection (1011.6392): why we are so
good?

I We use the errors correctly and account properly for missing
data; we have a generative model.

I That is true for both the training data and the test data.
I We are extensible to new prior information or other data.

I GALEX
I UKIDSS
I variability

I Bovy
I extreme-deconvolution (at code.google.com)

I Bovy, Hogg, & Roweis (0905.2979)
I it Just Works (tm)
I C code with Python and IDL wrappers / interface
I can handle large data sets with large numbers of dimensions

I SDSS-III BOSS core target selection



Polemic: Missing data

I Most machine-learning methods hate missing data.

I Interpolation or data censoring (both very, very bad) are
required.

I Any model that properly accounts for uncertainty also
properly accounts for missing data.

I Missing data is (extreme) uncertainty; uncertainty is (mild)
missing data.

I If you have a justified generative model p(Dn|ωn), you
automatically deal with missing data.



XDQSOz redshift prediction (1105.3975)

I Add redshift as a dimension to the photometric XDQSO.
I Add also GALEX and UKIDSS.

I Not full coverage? No problem!

I Model with extreme deconvolution again.
I Condition model on available photometry and predict redshift.

I Not all bands measured? No problem!



XDQSOz redshift prediction (1105.3975): Results
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XDQSOz redshift prediction (1105.3975): Examples
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XDQSOz redshift prediction (1105.3975): Examples



XDQSOz redshift prediction (1105.3975): Results

I We have the most precise and accurate photometric redshift
estimates for quasars in the magnitude and redshift ranges
relevant to SDSS-III BOSS.

I We can use all photometric bands where they are available,
but don’t need complete data.

I Signal-to-noise of training and test sets do not have to be
similar.

I Makes great use of extremely low signal-to-noise GALEX data
in both training and testing.



Polemic: Don’t convolve your data, convolve your model!

I If you are uncertain about something (a redshift, a
classification) so that you don’t know which bin to put it in:

I don’t put a bit of it into each bin!
I That re-convolves your noisy result with the noise again.

I Do put a bit of your distribution model into each bin.
I That is, convolve your model for the object with the

uncertainty.
I Obvious, but easy to get wrong.



Conclusions

I Hierarchical modeling is simple, powerful, and generic.
I Some of you are using it already (some without knowing it).

I We have obtained powerful results with it.
I eccentricity distributions for exoplanets
I classification: quasar target selection
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