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Polemic: Sometimes it is the prior that we seek

» We know about thousands of exoplanets, each of which has a
period T.
» Do we care about any particular planet's period?
> Yes, sometimes: We might want to schedule observations, or
estimate habitability.
» No, usually: We want to understand the processes that
generate the distribution of periods.
» We want to know the true distribution from which periods are
drawn.

» This true distribution is what we should be using as the prior
in every individual planet inference.

» Can we parameterize and infer a prior?



Conclusions

» Hierarchical modeling is simple, powerful, and generic.
» Some of you are using it already (some without knowing it).
» We have obtained powerful results with it.

» eccentricity distributions for exoplanets
» classification: quasar target selection
» prediction: photometric redshifts

» It is a form of deconvolution and we shouldn't be afraid of
that.
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Eccentricity estimation

» Single-point (e.g., maximum-likelihood) eccentricity estimates
are biased high.
» Shen & Turner (2008); others
» comes from model freedom: higher e — greater model freedom
» (recall continous model complexity)
» Most MCMC or Bayesian approaches use demonstrably wrong
flag priors on e.
» What priors should we be using?
» even if we use a justified prior, single-point estimates will
always be bad

» It matters!
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Eccentricity inference, usual story
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where po(wp) is some “uninformative” prior like flat in some
parameters, 1/x in others.



Eccentricity inference demo
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Eccentricity inference demo
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Eccentricity distribution inference (1008.4146)

What if you think there might be some family of priors p(wp|a)
parameterized by some «; could you infer this?

N
P({Dn},lyzl | {WN}rlyzl) = H p(Dnlwn)
n=1
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This is still a likelihood, but we have marginalized out the
properties of every exoplanet—these are “nuisance” parameters in
this formulation.



Eccentricity distribution inference (1008.4146)

Say all you get, for each exoplanet, are K samples drawn from an
uninformative prior. What then? Importance sampling.
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Eccentricity distribution model (1008.4146)

Use a non-parametric (read: very highly parameterized) function
for the eccentricity distribution): Step function with M steps.

M
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Note Gaussian-processes-like regularization.



Distribution inference demo: ML estimates—bad
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Distribution inference demo: Good!
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Polemic: Deconvolution

» We can infer the true distribution even with extremely noisy
measurements.
» This is an extreme form of deconvolution.
» (but not Extreme Deconvolution (tm))

» Depends crucially on having full—and accurate—likelihood or
posterior information.

» Performed by “forward modeling”.



Distribution inference demo: Small samplings
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Distribution inference demo: Small sample
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Distribution inference demo: Still good!
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Distribution inference demo: Truly hierarchical
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Conclusions

» Hierarchical modeling is simple, powerful, and generic.
» Some of you are using it already (some without knowing it).
» We have obtained powerful results with it.

» eccentricity distributions for exoplanets
» classification: quasar target selection
» prediction: photometric redshifts

» It is a form of deconvolution and we shouldn't be afraid of
that.



Quasar target selection: setup

» 2.2 < z < 3.5 quasars can be used to measure the baryon
acoustic oscillation in the Lyman alpha forest

» SDSS-111 BOSS
» quasars in this range look like stars in ugriz

» This is a hard supervised classification problem.



What's wrong with typical classification algorithms?

» neural networks, boltzmann machines, support vector
machines, boosting

» these are all awesome

» they require that test data have the same statistical and error
properties as training data

» they require that all features be measured for all data points



What's wrong with typical classification algorithms?
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properties as training data
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XDQSO target selection (1011.6392): Method

» extreme deconvolution:

» each data point samples the true density (in color space),
convolved with that data point's own unique uncertainty
profile

» an independent and unique convolution of the model for every
data point
» like having as many classifiers as data points

» model all this with mixtures of Gaussians for performance

» likelihood ratios (star vs. galaxy) are density ratios in the
convolved model



XDQSO target selection (1011.6392): Results

single—epoch data extreme—deconvolution with co—add errors co—added data
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XDQSO target selection (1011.6392): Results
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XDQSO target selection (1011.6392): why we are so
good?

» We use the errors correctly and account properly for missing
data; we have a generative model.

» That is true for both the training data and the test data.

» We are extensible to new prior information or other data.
» GALEX
» UKIDSS
» variability

» Bovy

» extreme-deconvolution (at code.google.com)

» Bovy, Hogg, & Roweis (0905.2979)

it Just Works (tm)

C code with Python and IDL wrappers / interface

can handle large data sets with large numbers of dimensions

» SDSS-1II BOSS core target selection

vYvyy



Polemic: Missing data

» Most machine-learning methods hate missing data.

» Interpolation or data censoring (both very, very bad) are
required.

» Any model that properly accounts for uncertainty also
properly accounts for missing data.

» Missing data is (extreme) uncertainty; uncertainty is (mild)
missing data.

» If you have a justified generative model p(D,|w,), you

automatically deal with missing data.



XDQSOz redshift prediction (1105.3975)

» Add redshift as a dimension to the photometric XDQSO.
» Add also GALEX and UKIDSS.

» Not full coverage? No problem!
» Model with extreme deconvolution again.

» Condition model on available photometry and predict redshift.
» Not all bands measured? No problem!



XDQSOz redshift prediction (1105.3975): Results

photometric redshift
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XDQSOz redshift prediction (1105.3975): Results

photometric redshift
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XDQSOz redshift prediction (1105.3975): Examples
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XDQSOz redshift prediction (1105.3975): Examples
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XDQSOz redshift prediction (1105.3975): Examples
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XDQSOz redshift prediction (1105.3975): Examples
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XDQSOz redshift prediction (1105.3975): Results

» We have the most precise and accurate photometric redshift

estimates for quasars in the magnitude and redshift ranges
relevant to SDSS-111 BOSS.

» We can use all photometric bands where they are available,
but don't need complete data.

» Signal-to-noise of training and test sets do not have to be
similar.

» Makes great use of extremely low signal-to-noise GALEX data
in both training and testing.



Polemic: Don't convolve your data, convolve your model!

» If you are uncertain about something (a redshift, a
classification) so that you don’t know which bin to put it in:
» don’t put a bit of it into each bin!
» That re-convolves your noisy result with the noise again.
» Do put a bit of your distribution model into each bin.
» That is, convolve your model for the object with the

uncertainty.
» Obvious, but easy to get wrong.



Conclusions

» Hierarchical modeling is simple, powerful, and generic.
» Some of you are using it already (some without knowing it).
» We have obtained powerful results with it.

» eccentricity distributions for exoplanets
» classification: quasar target selection
» prediction: photometric redshifts

» It is a form of deconvolution and we shouldn't be afraid of
that.



