Hierarchical modeling

David W. Hogg Center for Cosmology and Particle Physics, New York University

2011 April 2

Polemic: Sometimes it is the *prior* that we seek

- We know about thousands of exoplanets, each of which has a period T.
- Do we care about any particular planet's period?
 - Yes, sometimes: We might want to schedule observations, or estimate habitability.
 - ▶ No, usually: We want to understand the processes that generate the *distribution* of periods.
- We want to know the true distribution from which periods are drawn.
- ► This true distribution is what we should be using as the *prior* in every individual planet inference.
- ► Can we parameterize and infer a *prior*?

Conclusions

- Hierarchical modeling is simple, powerful, and generic.
 - ► Some of you are using it already (some without knowing it).
- ▶ We have obtained powerful results with it.
 - eccentricity distributions for exoplanets
 - ► classification: quasar target selection
 - prediction: photometric redshifts
- It is a form of deconvolution and we shouldn't be afraid of that.

Principal collaborators

- ► Jo Bovy (NYU → IAS)
- ► Joe Hennawi (MPIA)
- ► **Dustin Lang** (Princeton)
- ► Adam Myers (UIUC → Wyoming)
- ► Hans-Walter Rix (MPIA)
- ► Sam Roweis (deceased)
- ► SDSS-III Collaboration

Eccentricity estimation

- ► Single-point (e.g., maximum-likelihood) eccentricity estimates are biased high.
 - ▶ Shen & Turner (2008); others
 - ightharpoonup comes from model freedom: higher e o greater model freedom
 - (recall continous model complexity)
- ► Most MCMC or Bayesian approaches use *demonstrably wrong* flag priors on *e*.
- ▶ What priors should we be using?
 - even if we use a justified prior, single-point estimates will always be bad
- It matters!

Eccentricities

Eccentricity inference, usual story

$$\omega_{n} \equiv (\kappa_{n}, T_{n}, \phi_{n}, e_{n}, \varpi_{n})$$

$$v_{nj} = V_{n} + g\omega_{n}(t_{nj}) + E_{nj}$$

$$-2 \ln p(\mathbf{D}_{n}|\omega_{n}) = Q + \sum_{j=1}^{M_{n}} \ln(\sigma_{nj}^{2} + S_{n}^{2}) + \sum_{j=1}^{M_{n}} \frac{[V_{n} + g\omega_{n}(t_{nj}) - v_{nj}]^{2}}{\sigma_{nj}^{2} + S_{n}^{2}}$$

$$p(\omega_{n}|\mathbf{D}_{n}) = \frac{1}{Z_{n}} p(\mathbf{D}_{n}|\omega_{n}) p_{0}(\omega_{n}) ,$$

where $p_0(\omega_n)$ is some "uninformative" prior like flat in some parameters, 1/x in others.

Eccentricity inference demo

Eccentricity inference demo

Eccentricity distribution inference (1008.4146)

What if you think there might be some family of priors $p(\omega_n|\alpha)$ parameterized by some α ; could you infer this?

$$p(\{\mathbf{D}_n\}_{n=1}^N \mid \{\omega_n\}_{n=1}^N) = \prod_{n=1}^N p(\mathbf{D}_n | \omega_n)$$

$$p(\{\mathbf{D}_n\}_{n=1}^N \mid \alpha) = \prod_{n=1}^N \int d\omega_n \, p(\mathbf{D}_n | \omega_n) \, p(\omega_n | \alpha) .$$

This is still a likelihood, but we have marginalized out the properties of every exoplanet—these are "nuisance" parameters in this formulation.

Eccentricity distribution inference (1008.4146)

Say all you get, for each exoplanet, are K samples drawn from an uninformative prior. What then? Importance sampling.

$$p(\boldsymbol{\omega}_{n}|\boldsymbol{\alpha}) \equiv \frac{f_{\boldsymbol{\alpha}}(e_{n}) p_{0}(\boldsymbol{\omega}_{n})}{p_{0}(e_{n})}$$

$$\int d\boldsymbol{\omega}_{n} p_{0}(\boldsymbol{\omega}_{n}|\mathbf{D}_{n}) F(\boldsymbol{\omega}_{n}) \approx \frac{1}{K} \sum_{k=1}^{K} F(\boldsymbol{\omega}_{nk})$$

$$p(\{\mathbf{D}_{n}\}_{n=1}^{N} | \boldsymbol{\alpha}) \approx \prod_{n=1}^{N} \frac{1}{K} \sum_{k=1}^{K} \frac{f_{\boldsymbol{\alpha}}(e_{nk})}{p_{0}(e_{nk})}$$

Eccentricity distribution model (1008.4146)

Use a non-parametric (read: very highly parameterized) function for the eccentricity distribution): Step function with M steps.

$$f_{\alpha}(e) \equiv \sum_{m=1}^{M} \exp(\alpha_{m}) s(e; \frac{m-1}{M}, \frac{m}{M})$$

$$s(x; L, H) \equiv \begin{cases} 0 & \text{for } x < L \\ (H - L)^{-1} & \text{for } L \le x \le H \\ 0 & \text{for } H < x \end{cases}$$

$$\sum_{m=1}^{M} \exp \alpha_{m} = 1$$

$$p(\alpha) \propto \delta(1 - \sum_{m=1}^{M} \exp \alpha_m) \exp(-\frac{1}{2} \epsilon \sum_{m=2}^{M} [\alpha_m - \alpha_{m-1}]^2)$$

Note Gaussian-processes-like regularization.

Distribution inference demo: ML estimates—bad

Distribution inference demo: Good!

Polemic: Deconvolution

- ► We can infer the true distribution even with extremely noisy measurements.
- ▶ This is an extreme form of deconvolution.
 - ▶ (but not Extreme Deconvolution (tm))
- Depends crucially on having full—and accurate—likelihood or posterior information.
- ▶ Performed by "forward modeling".

Distribution inference demo: Small samplings

Distribution inference demo: Small sample

Distribution inference demo: Still good!

Distribution inference demo: Truly hierarchical

Conclusions

- ► Hierarchical modeling is simple, powerful, and generic.
 - ► Some of you are using it already (some without knowing it).
- ▶ We have obtained powerful results with it.
 - eccentricity distributions for exoplanets
 - ► classification: quasar target selection
 - prediction: photometric redshifts
- It is a form of deconvolution and we shouldn't be afraid of that.

Quasar target selection: setup

- ightharpoonup 2.2 < z < 3.5 quasars can be used to measure the baryon acoustic oscillation in the Lyman alpha forest
- ► SDSS-III BOSS
- quasars in this range look like stars in ugriz
- ► This is a hard supervised classification problem.

What's wrong with typical classification algorithms?

- neural networks, boltzmann machines, support vector machines, boosting
- ▶ these are all awesome
- ► they require that *test data* have the same statistical and error properties as *training data*
- ▶ they require that all features be measured for all data points

What's wrong with typical classification algorithms?

- neural networks, boltzmann machines, support vector machines, boosting
- ▶ these are all awesome
- ► they require that *test data* have the same statistical and error properties as *training data*
- ▶ never true!
- ▶ they require that all features be measured for all data points
- ▶ never true!

XDQSO target selection (1011.6392): Method

- extreme deconvolution:
- each data point samples the true density (in color space), convolved with that data point's own unique uncertainty profile
 - an independent and unique convolution of the model for every data point
 - ▶ like having as many classifiers as data points
- ▶ model all this with mixtures of Gaussians for performance
- ▶ likelihood ratios (star vs. galaxy) are density ratios in the convolved model

XDQSO target selection (1011.6392): Results

XDQSO target selection (1011.6392): Results

XDQSO target selection (1011.6392): why we are so good?

- ► We use the errors correctly and account properly for missing data; we have a *generative model*.
- ▶ That is true for both the training data and the test data.
- ▶ We are extensible to new prior information or other data.
 - ► GALEX
 - ► UKIDSS
 - variability
- ▶ Bovy
- extreme-deconvolution (at code.google.com)
 - ► Bovy, Hogg, & Roweis (0905.2979)
 - ▶ it Just Works (tm)
 - ► C code with Python and IDL wrappers / interface
 - ► can handle large data sets with large numbers of dimensions
- ► SDSS-III BOSS core target selection

Polemic: Missing data

- ▶ Most machine-learning methods hate missing data.
- ► Interpolation or data censoring (both very, very bad) are required.
- ► Any model that properly accounts for *uncertainty* also properly accounts for *missing data*.
 - Missing data is (extreme) uncertainty; uncertainty is (mild) missing data.
- ▶ If you have a justified generative model $p(\mathbf{D}_n|\omega_n)$, you automatically deal with missing data.

XDQSOz redshift prediction (1105.3975)

- ▶ Add redshift as a dimension to the photometric XDQSO.
- ► Add also GALEX and UKIDSS.
 - ► Not full coverage? No problem!
- ▶ Model with extreme deconvolution again.
- ► Condition model on available photometry and predict redshift.
 - ► Not all bands measured? No problem!

XDQSOz redshift prediction (1105.3975): Results

XDQSOz redshift prediction (1105.3975): Results

XDQSOz redshift prediction (1105.3975): Results

- ► We have the most precise and accurate photometric redshift estimates for quasars in the magnitude and redshift ranges relevant to SDSS-III BOSS.
- ► We can use all photometric bands where they are available, but don't need complete data.
- Signal-to-noise of training and test sets do not have to be similar.
- ► Makes great use of extremely low signal-to-noise *GALEX* data in both training and testing.

Polemic: Don't convolve your data, convolve your model!

- ▶ If you are uncertain about something (a redshift, a classification) so that you don't know which bin to put it in:
- ► don't put a bit of it into each bin!
 - ► That re-convolves your noisy result with the noise again.
- ► Do put a bit of your distribution model into each bin.
 - ► That is, convolve your *model* for the object with the uncertainty.
 - ► Obvious, but easy to get wrong.

Conclusions

- ► Hierarchical modeling is simple, powerful, and generic.
 - ► Some of you are using it already (some without knowing it).
- ▶ We have obtained powerful results with it.
 - eccentricity distributions for exoplanets
 - ► classification: quasar target selection
 - prediction: photometric redshifts
- It is a form of deconvolution and we shouldn't be afraid of that.