

Generalized Stellar Parametrizer with Gaia Photometry Data (GSP-Phot)

Chao Liu, Coryn Bailer-Jones Paraskevi Tsalmantza and Kester Smith

Max-Planck-Institut für Astronomie Heidelberg, Germany

30-May-2011

The parametrization problem

- Estimation of the best continuous parameters (generally, probability distribution over the parameters)
 - Astrophysical parameters (AP)
 - Effective temperature(Teff)
 - Metallicity([Fe/H])
 - Surface gravity(logg)
 - Interstellar medium extinction : $A_{\lambda} = A_{0}[a(\lambda) + b(\lambda)/R_{0}]$
- Use as much information as possible
 - BP/RP combined with multi-epoch observations (color)
 - Parallax (distance)
 - G magnitude (brightness)

30-May-2011

gaia

Gaia data

Strong APs and Weak APs

- Strong APs: Teff, A0
- Weak APs: [Fe/H], logg

Methods of estimation

- Template matching
 - e.g. k-nearest neighbors
 - direct method
 - need a large grid with high dimensions
 - slow and insensitive to weak APs
- Forward model
 - fit the function: spectrum=f(AP)
 - GoF/error estimates
 - difficult to simultaneously fit the strong and weak APs
- Pattern recognition
 - ANN, SVM, etc.
 - flexible and fast
 - but complicated, no natural error estimates

30-May-2011

Algorithms used in GSP-Phot

- Support vector regression
- Forward model (ILIUM) (Bailer-Jones 2010)
- Add parallax to a forward model, a Bayesian method (q-method) (Bailer-Jones 2011)

SVM regression

set up SVM training model for each AP

Regression model: $f(x) = w \cdot x + b$

SVR:

$$\begin{array}{ll} \text{minimize } \frac{1}{2} \|w\|^2 & \text{minimize } \frac{1}{2} \|w\|^2 + C \sum_{i=1}^l (\xi_i + \xi_i^*) \\ \text{subject to } \|y_i - (w \cdot x_i - b)\| \leq \varepsilon & \\ & \text{subject to } \begin{cases} y_i - w \cdot x_i - b \leq \varepsilon + \xi_i \\ w \cdot x_i + b - y_i \leq \varepsilon + \xi_i^* \\ \xi_i, \, \xi_i^* \geq 0 \end{cases} \end{array}$$

30-May-2011

Support vector regression

- spectrum: p_i
- APs: ϕ_j
- $p_i = f_i(\boldsymbol{\phi})$
- sensitivity matrix S, $s_{ij} = \partial p_i / \partial \phi_j$
- Iteratively find the best fitted Φ from the AP grid spanned AP-flux surface
- Given Φ, how to determine the p from the forward model grid?

weak AP, I

Bailer-Jones 2010

- Forward model:
 - evaluate $f_i^S(\phi^S)$ over weak APs
 - select weak component: find ϕ_k^S , the nearest neighbour in grid to ϕ^S
 - evaluate $f_{i,k}^W(\phi^W; \phi^S = \phi_k^S)$
 - $f_i(\phi^S, \phi^W) = f_i^S(\phi^S) + f_{i,k}^W(\phi^W; \phi^S = \phi_k^S)$

Parallax + forward model (qmethod)

30-May-2011

Use Beyasian theorem

 $V + 5\log\varpi = M_{\rm V} + A_{\rm V} - 5$

 $q\,\equiv\,V+5\log\varpi$.

Use Beyasian theorem

Test with Simulated data

- Simulated Gaia data from synthetic library
 - Phoenix library: 3000<Teff<10000
 - True APs are known in the simulated data for comparison

Results (A0<3mag)

SVM

ILIUM

q-method

- Spectral types
 - A stars: 7500-10000 K
 - F stars: 6000-7500 K
 - G stars: 5250-6000 K
 - K stars: 3750-5250 K
- Brightness
 - G<16.5 mag
 - G>16.5 mag

gaia					
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
< $ $ Teff(true) - Teff(est) >	71	111	65	53	117
< $ A0(true) - A0(est) >$	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
< LogG(true) - LogG(est) >	0.39	0.23	0.27	0.43	0.90
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
< $ $ Teff(true) - Teff(est) >	265	426	226	226	392
< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
< LogG(true) - LogG(est) >	0.47	0.35	0.33	0.51	1.02
	0.17	0.00	0.00	0.01	

S	V	Μ

K	gaia					SVIVI
	G<16.5mag			P		
	AP residual	All stars	A stars	F stars	G stars	K stars
	< Teff(true) - Teff(est) >	71	111	65	53	117
	< A0(true) - A0(est) >	0.05	0.05	0.03	0.04	0.13
	< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
	< LogG(true) - LogG(est) >	0.39	0.23	0.27	0.43	0.90
	G<16.5mag					
	AP residual	All stars	A stars	F stars	G stars	K stars
	< $ $ Teff(true) - Teff(est) >	265	426	226	226	392
	< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
	< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
	LogG(true) - LogG(est) >	0.47	0.35	0.33	0.51	1.02
						L

SVM	
••••	

gaia					SVM
G<16.5mag AP residual	All stars	A stars	F stars	G stars	K stars
$< Teff(true) - Teff(est) >$	71	111	65	53	117
< A0(true) - A0(est) >	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
< $ LogG(true) - LogG(est) $ >	0.39	0.23	0.27	0.43	0.90
G<16.5mag	-				
AP residual	All stars	A stars	F stars	G stars	K star
$< $ <i>Teff(true)</i> - <i>Teff(est)</i> $ >$	265	426	226	226	392
< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
< LogG(true) - LogG(est) >	0.47	0.35	0.33	0.51	1.02

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					IL	.IUM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G<16.5mag	-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AP residual	All stars	A stars	F stars	G stars	K stars
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Teff(true) - Teff(est) >	363	483	419	279	291
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< A0(true) - A0(est) >	0.25	0.18	0.29	0.21	0.24
LogG(true) - LogG(est) > 0.61 0.49 0.59 0.62 0.77 G<16.5mag	< FeH(true) - FeH(est) >	0.35	0.78	0.29	0.32	0.29
G<16.5mag	< LogG(true) - LogG(est) >	0.61	0.49	0.59	0.62	0.77
A Presidual All stors A stors E stors C stors V stor	G<16.5mag					
Ar iesiduai Ali stars A stars F stars G stars K star	AP residual	All stars	A stars	F stars	G stars	K stars
< Teff(true) - Teff(est) > 753 971 803 640 706	Teff(true) - Teff(est) >	753	971	803	640	706
< A0(true) - A0(est) > 0.47 0.41 0.48 0.45 0.55	< A0(true) - A0(est) >	0.47	0.41	0.48	0.45	0.55
< FeH(true) - FeH(est) > 0.75 1.24 0.68 0.70 0.74	< FeH(true) - FeH(est) >	0.75	1.24	0.68	0.70	0.74
< LogG(true) - LogG(est) > 1.45 0.99 1.40 1.65 1.51	< LogG(true) - LogG(est) >	1.45	0.99	1.40	1.65	1.51

SVM	
••••	

gaia					
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K star
< Teff(true) - Teff(est) >	71	111	65	53	117
< A0(true) - A0(est) >	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
< LogG(true) - LogG(est) >	0.39	0.23	0.27	0.43	0.90
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K star
< $ $ Teff(true) - Teff(est) >	265	426	226	226	392
< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
< LogG(true) - LogG(est) >	0.47	0.35	0.33	0.51	1.02

				IL	.IUM
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
Teff(true) - Teff(est) >	363	483	419	279	291
< A0(true) - A0(est) >	0.25	0.18	0.29	0.21	0.24
< FeH(true) - FeH(est) >	0.35	0.78	0.29	0.32	0.29
LogG(true) - LogG(est) >	0.61	0.49	0.59	0.62	0.77
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
Teff(true) - Teff(est) >	753	971	803	640	706
< A0(true) - A0(est) >	0.47	0.41	0.48	0.45	0.55
< FeH(true) - FeH(est) >	0.75	1.24	0.68	0.70	0.74
< LogG(true) - LogG(est) >	1.45	0.99	1.40	1.65	1.51

gaia					SVM
G<16.5mag AP residual	All stars	A stars	F stars	G stars	K stars
Teff(true) - Teff(est) >	71	111	65	53	117
< A0(true) - A0(est) >	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
< LogG(true) - LogG(est) >	0.39	0.23	0.27	0.43	0.90
G<16.5mag	-				
AP residual	All stars	A stars	F stars	G stars	K star
$< $ $Teff(true) - Teff(est) >$	265	426	226	226	392
< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
< LogG(true) - LogG(est) >	0.47	0.35	0.33	0.51	1.02

				IL	.IUM
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
< Teff(true) - Teff(est) >	363	483	419	279	291
< A0(true) - A0(est) >	0.25	0.18	0.29	0.21	0.24
< FeH(true) - FeH(est) >	0.35	0.78	0.29	0.32	0.29
< LogG(true) - LogG(est) >	0.61	0.49	0.59	0.62	0.77
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
$ $ $Teff(true) - Teff(est) >$	753	971	803	640	706
< A0(true) - A0(est) >	0.47	0.41	0.48	0.45	0.55
< FeH(true) - FeH(est) >	0.75	1.24	0.68	0.70	0.74
< LogG(true) - LogG(est) >	1.45	0.99	1.40	1.65	1.51

30-May-2011 GRE

gaia					SVM
G<16.5mag AP residual	All stars	A stars	F stars	G stars	K stars
Teff(true) - Teff(est) >	71	111	65	53	117
< A0(true) - A0(est) >	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) >	0.33	0.65	0.35	0.23	0.32
< LogG(true) - LogG(est) >	0.39	0.23	0.27	0.43	0.90
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
$< $ $Teff(true) - Teff(est) >$	265	426	226	226	392
< A0(true) - A0(est) >	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) >	0.51	0.71	0.51	0.41	0.58
< $ LogG(true) - LogG(est) >$	0.47	0.35	0.33	0.51	1.02

					.IUM
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
$< $ $Teff(true) - Teff(est) >$	363	483	419	279	291
< A0(true) - A0(est) >	0.25	0.18	0.29	0.21	0.24
< FeH(true) - FeH(est) >	0.35	0.78	0.29	0.32	0.29
< LogG(true) - LogG(est) >	0.61	0.49	0.59	0.62	0.77
G<16.5mag					
AP residual	All stars	A stars	F stars	G stars	K stars
Teff(true) - Teff(est) >	753	971	803	640	706
< A0(true) - A0(est) >	0.47	0.41	0.48	0.45	0.55
< FeH(true) - FeH(est) >	0.75	1.24	0.68	0.70	0.74
< LogG(true) - LogG(est) >	1.45	0.99	1.40	1.65	1.51

Analysis

- Suppose that we select certain spectral. type, e.g. F stars, from Gaia catalog using estimated Teff
- Q1: How many true F stars are contained in the sample (completeness)?
- Q2: How many stars in the sample are contaminations?

A stars	F stars	G stars	K stars	(A0<3mag)
s 0.992	0.983	0.962	0.922	. (
n 0.030	0.030	0.032	0.037	
s 0.848	0.899	0.753	0.475	
n 0.043	0.215	0.241	0.256	
s 0.939	0.931	0.829	0.915	-
n 0.031	0.082	0.106	0.287	
s 0.826	0.681	0.448	0.638	
n 0.238	0.313	0.390	0.637	
	A stars s 0.992 n 0.030 s 0.848 n 0.043 s 0.939 n 0.031 s 0.826 n 0.238	A stars F stars s 0.992 0.983 n 0.030 0.030 s 0.848 0.899 n 0.043 0.215 s 0.939 0.931 n 0.031 0.082 s 0.826 0.681 n 0.238 0.313	A starsF starsG starss0.9920.9830.962n0.0300.0300.032s0.8480.8990.753n0.0430.2150.241s0.9390.9310.829n0.0310.0820.106s0.8260.6810.448n0.2380.3130.390	A starsF starsG starsK starss0.9920.9830.9620.922n0.0300.0300.0320.037s0.8480.8990.7530.475n0.0430.2150.2410.256s0.9390.9310.8290.915n0.0310.0820.1060.287s0.8260.6810.4480.638n0.2380.3130.3900.637

- For [Fe/H], we concern about its distribution
- For logg, we concern about if we can separate giant, subgiant from dwarfs

GREAT Workshop on Astrostatistics and Data Mining in Astronomical Databases@La Palma

- GSP-Phot is implemented for parametrizing stars with Gaia photometric data
- Three algorithms are applied: SVM, ILIUM and q-method
- SVM performs much better for strong APs (Teff and A0)
- ILIUM gives more unbiased estimates for weak APs ([Fe/H] and logg)
- q-method works well on breaking the degeneracy between Teff and A0, though it still needs to be fine tuned
- Based on simulated data the performance of SVM and ILIUM for bright sources is almost ready for science
- The real data is a different story, calibration should be taken cared of and the algorithms need to be tuned