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I classification of variable stars important
I scientific knowledge discovery
I allocation of telesopic resources

I size of data sets require statistical / machine learning methods
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Classifying Time Series

1. compute real valued functions, termed features, of the time
series

I fourier coefficients
I skew, standard deviation, amplitude, ect.
I context features - where in the sky was source observed

2. each lightcurve becomes a vector in Rp

3. apply classification methods such as Random Forests, Naive
Bayes, ect.

Approach taken by [1, 3, 2].
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Problem

I labeled data from catalogs (the training set) have hundreds of
flux measurements

I OGLE
I Hipparcos

I unlabeled data from ongoing / upcoming surveys (the test
set) have many fewer flux measurements

I GAIA
I LSST
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Problem

I the conditional distribution p(class|features) may be different
in test and training sets

I features in test data have error

I but classifiers assume these conditional distributions are the
same
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How do you use lightcurves that look like this?
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Light curves with ∼ 200 Flux
Measurements
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Problem Setup and Notation

Training Data:
{(Xi ,Zi )}ni=1 i .i .d . with Xi ∈ Rp, Zi is class of observation i

Test Data:
Observe Y where Y = f (X , δ). Same relationship between X and
Z as in training set.

Goal:
Construct a classifier: Cz(y) = p(Z = z |Y = y)
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Strategy 1: Noisification

Main Idea:

1. truncate light curves in training set to match length of light
curves in test set

2. derive features for truncated training light curves

3. train classifier on features derived from truncated training
light curves

I use random forests

Repeat several times, selecting different subset of flux
measurements from training light curves each time. Average
resulting classifiers.

13 / 33



Problem Motivation
Frameworks

Data Experiments
Conclusions

Strategy 1: Noisification

Main Idea:

1. truncate light curves in training set to match length of light
curves in test set

2. derive features for truncated training light curves

3. train classifier on features derived from truncated training
light curves

I use random forests

Repeat several times, selecting different subset of flux
measurements from training light curves each time. Average
resulting classifiers.

14 / 33



Problem Motivation
Frameworks

Data Experiments
Conclusions

Strategy 2: Denoisification

Main Idea:

1. construct classifier on unmodified training data

I p̂(z |x), use random forests

2. denoise features of test observation

I p̂(x |y) = p̂(x,y)
p̂(y) = p̂(y |x)p̂(x)

p̂(y)

3. combine to get classifier for test data

I p̂(z |y) =
1
n

∑n
i=1 p̂(z|xi )p̂(y |xi )

p(y)
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Strategy 2: Denoisification

p(z |y) =

∫
p(z , x |y)dx

=

∫
p(z |x , y)p(x |y)dx

=

∫
p(z |x)p(x |y)dx

=

∫
p(z |x)p(y |x)p(x)dx

p(y)

which we estimate using,

p̂(z |y) =
1
n

∑n
i=1 p̂(z |xi )p̂(y |xi )

p̂(y)
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Denoisification

Estimating p(y |x),

I {xi}ni=1 features for well sampled training

I {yi}ni=1 features for poorly sampled training

I yki = gk(xi ) + εk,i

Using data {(xi , yki )}ni=1 and random forests regression, estimate
gk
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Denoisification

p̂(y |x) =

p∏
k=1

p̂(yk |x)

=

p∏
k=1

φ

(
ĝk(x)− yk

σ̂k

)

I assumptions:
1. conditional independence of features from poorly sampled

curve y given features from well sampled version of curve x

p(y |x) =

p∏
k=1

p(yk |x)

2. εk,i are gaussian (φ is standard gaussian density)
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Data Sets

Simulated (500 train / 500 test)

I 200 measurements / curve

I RR Lyrae, Cepheid, β Persei, β Lyrae, Mira

I equal class sizes

OGLE (358 train / 165 test)∗

I ∼ 250 measurements / curve

I RR Lyrae DM, MM Cepheid, β Persei, β Lyrae, W Ursae
Majoris

I smallest 50 largest 150

∗ from [3]
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Test Set

I truncate test curves at 10, 20, . . . , 100 measurements

I now have 10 test sets

I study how methods perform under varying noise levels
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Simulated Error Rates
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denoisification improve
performance

I improvement strongest at
low number of flux / light
curve test sets
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OGLE Error Rates

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Flux Measurements

E
rr

or

●

●

●

●
●

●
●

●

●
●

●

Classifiers

Naive
Denoisification
Noisification

I similar story as with
simulated data

I curves rougher because of
cadence issues
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Robustness of Noisified Classifiers

I difficult to noisify all data for every new observation

I continuity in how feature distribution change with number of
points per curve
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Robustness of Noisified Classifiers for Simulated Data
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Naive
10−Point Noisification
50−Point Noisification
100−Point Noisification

error CI

Naive 0.09 (0.06,0.11)
10-Point 0.17 (0.14,0.21)
50-Point 0.08 (0.05,0.1)

100-Point 0.08 (0.05,0.1)

Table: Error on Well
Sampled Test Light Curves
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Robustness of Noisified Classifiers for OGLE Data
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Naive
10−Point Noisification
50−Point Noisification
100−Point Noisification

error CI

Naive 0.12 (0.07,0.17)
10-Point 0.18 (0.12,0.24)
50-Point 0.13 (0.08,0.18)

100-Point 0.12 (0.07,0.16)

Table: Error on Well
Sampled Test Light Curves
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Noisifying Frequency for 20 Flux Curves

Noisification shifts distribution of training to distribution of test.
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Noisifying Frequency for 60 Flux Curves
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Uses of Noisification and Denoisification

I here we used noisification / denoisification for differences in
number of flux measurements per curve in training / test data

I could use nois. / denois. to address other systematic
differences between training and test sets

I flux noise
I censoring
I cadences
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Conclusions

I not addressing noise results in suboptimal classifiers

I noisification and denoisification methods improve results

I noisification easier to implement in astronomy setting
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