
Interpreted Languages Intro to Python Libraries Beyond Libraries

Python

Robert Lupton

30 May 2011

Interpreted Languages Intro to Python Libraries Beyond Libraries

Interpreted Languages

Fast development (no compile-link-run cycle)

Interactive development

High level (no need to worry about pointers)

Interpreted Languages Intro to Python Libraries Beyond Libraries

Python

Powerful builtins

Object oriented

Rich libraries

dynamic typing

O�cial Tutorial and Manual

http://docs.python.org/tutorial/index.html

There are two slightly inconsistent versions of python in the
wild, python 2.x and python 3.x

Within the 2.x series (currently 2.7) features were added
from time to time. If you're concerned about portability
you may want to avoid newer constructions (e.g. X if

LOGICAL else Y, with) Eventually we'll all have to move to
python 3 (currently at 3.2), but I'm not in a hurry.

http://docs.python.org/tutorial/index.html

Interpreted Languages Intro to Python Libraries Beyond Libraries

XKCD

Python versions

Interpreted Languages Intro to Python Libraries Beyond Libraries

Hello World

Let us write �Hello world� in python:
print "Hello world"

You can run python scripts from the shell:
$ cat hello.py
#!/usr/bin/env python
print "Hello world"
$./ hello.py
Hello world

(That #! line is standard unix magic for, �use python to run
this script�)
Or interactively:

$ python
>>> print "Hello world"
Hello world

Interpreted Languages Intro to Python Libraries Beyond Libraries

Interactive Usage

These days we are all spoilt by the unix shells. We expect:

To be able to use ↑↓←→ to save typing

To be able to use TAB to complete command and �le
names

That our history be saved between sessions

This is all available in python. Two solutions:

Use ipython (http://ipython.scipy.org/moin/)

Put cunning and cryptic commands in your python
startup �le ($PYTHONSTARTUP)

http://ipython.scipy.org/moin/

Interpreted Languages Intro to Python Libraries Beyond Libraries

Primitive types

None

bool (True, False)

int

long (arbitrary precision)

float

Interpreted Languages Intro to Python Libraries Beyond Libraries

Lists and Tuples

Python supports two separate-but-almost-equal list types:
list

>>> li = [100, 101, 102, 103]
>>> li[0]
100
>>> x = li [1:3]
>>> x
[101, 102] # not [100, 101, 102]

>>> li[-1] = 666
>>> li
[100, 101, 102, 666]

tuple

>>> tp = (100, 101, 102, 103)
>>> tp[0]
100
>>> x = tp [1:3]
>>> x
(101, 102)

>>> tp[-2] = 666
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: 'tuple ' object does not support item assignment

There is also set

A sorted list with each element appearing only once.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Strings

Python strings can be delimited with ", ', """, or �'

>>> s = "Hello world"
>>> s2 = 'Goodbye , sweet life'
>>> s3 = """I really like
to split greetings over multiple lines """

I recommend not randomly switching between " and '

strings (as it makes it hard to �nd them in your editor). I
personally follow the C convention: "Hello world" but 'H'.
Strings have several useful methods:

>>> print s.upper()
HELLO WORLD

>>> s.find('w')
6

>>> print s[s.find('w'):]
world

>>> s.split ()
['Hello ', 'world ']

You can't interpolate variable ("$a $b $c"), but you can say
>>> a, b, c = "A", "B", "C"
>>> print "%s %s %s" % (a, b, c)
A B C

Interpreted Languages Intro to Python Libraries Beyond Libraries

Dictionaries

>>> di = {"lsb": "Luis", "suzanne.aigrain": "Suzanne", "rhl": "Robert"}

>>> print di['rhl']
Robert
>>> print di.keys(), di.values ()
['lsb', 'rhl', 'suzanne.aigrain '] ['Luis', 'Robert ', 'Jim']

>>> di = dict(president = "Obama")

>>> di["prime minister"] = "Berlusconi"

N.b. python supports garbage collection; when we said di =

dict(president = "Obama") the memory for our email
dictionary was returned to the system.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Loading source �les

If you have a �le foo.py, you can make it visible from
python with import foo. If you modify foo.py and repeat
the import, nothing happens. To see your changes, you
have to say reload(foo)

Python searches for foo.py by searching the directories in
$PYTHONPATH (a : separated list) in order.
When you �rst import a �le it's compiled to a .pyc �le
(foo.pyc). You'll probably want to tell your source code
manager (e.g. hg or svn) to ignore .pyc �les, e.g. by adding
*.pyc to your .hgignore �le.
"Orphan" .pyc �les can be very confusing. If you move
foo.py to a directory later in $PYTHONPATH, but leave
foo.pyc behind, python will happily import the .pyc �le for
you; this may not be what you intended.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Control structures

Python has the standard control structures: if-elif-else,
for, while and logicals and, or, not ==, <, . . .

if x == 1:
print "One"

elif x == 2 or x == 3:
print "Two or Three"

else:
print "Something else"

The block structure is de�ned by whitespace. This seems
weird, but you soon get used to it. I believe that it was a
very bad design decision, but it's not going to change.
Because there isn't any information about a program's
block structure except the white space, you have to be very
careful.
Another issue is mixing tabs and spaces; it's probably better
to instruct your editor to insert spaces even when you hit
the tab key to avoid the problem.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Changing program logic

In C I can write
if (x == 0) {

printf("One\n");
} else {

printf("Not one\n");
}

If I need to change the indentation level I can modify this
to

if (y == 10) {
if (x == 0) {

printf("One\n");
} else {

printf("Not one\n");
}
}

and get my editor to reindent to make it look pretty.
In python, things aren't so nice.

if y == 10:
if x == 1:

print "One"
else:

print "Not one"

I cannot tell whether the else belongs to the x or y test. My
only hope is to rigidly reindent the block (use �C> in emacs)

Interpreted Languages Intro to Python Libraries Beyond Libraries

for and while loops

for r in ("Arrow", "Birdland", "Matinee"):
print r

n = 10
for i in range(n):

for j in range(i, n):
print i, j

(note that range(n) counts from 0 to n-1, not up to n).
i = 0
while True:

i += 10
if i == 100:

break
print i

continue is also available. But goto isn't.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Functions

def myRange(n):
""" Return (0...n)"""
i, out = 0, []
while i < n:

out.append(i)
i += 1

return out

for i in myRange (10):
print i

Simple variables (int, float) are passed by value; everything
else is passed by reference.
This mans that if you modify a list or dictionary passed to
a function it'll be modi�ed in the calling routine too; you
may need to make a copy:

li = li[:]
di = di.copy()

It'd be nice if list also supported copy; you can always use
import copy; copy.copy(XXX)

Interpreted Languages Intro to Python Libraries Beyond Libraries

Default arguments

You can also specify default values for arguments (as well
as variable numbers of arguments):

def myRange(n, end=None , dn=1):
""" Return a list of integers

Details ...
"""

if end == None:
i, end = 0, n

else:
i = n

out = []
while i < end:

out.append(i)
i += dn

return out

>>> myRange (3)
(0, 1, 2)
>>> myRange(2, 4)
(2, 3)
>>> myRange(2, 10, 2)
(2, 4, 6, 8)
>>> myRange (10, dn=2)
(0, 2, 4, 6, 8)

Interpreted Languages Intro to Python Libraries Beyond Libraries

Exceptions

Don't do this at home:
>>> myRange(0, 10, -2)

the program will appear to hang until you hit �C (or run out
of memory � I should have used yield)

>>> ^C^C
>>> import pdb; pdb.pm()
0
0
> <stdin >(13) myRange ()
(Pdb) p i
-5184308
(Pdb)

We're counting down to −∞
def myRange(n, end=None , dn=1):

...
if dn <= 0:

raise RuntimeError("Increment is negative: %g" % (dn))

Interpreted Languages Intro to Python Libraries Beyond Libraries

Catching exceptions

An exception need not be fatal:
try:

myRange(0, 10, -2)
except RuntimeError , e:

print "Caught exception:", e

There are also more complicated and powerful forms of this
try except pattern.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Classes

Python is an Object Orientated language. In people.py I
wrote:

class Person(object):
""" Describe a person """

def __init__(self , email=None , surname=None):
self.email = email
self.surname = surname

Note that self plays the part of C++'s this, but you have to
explicitly write it out. All member functions expect self as
their �rst argument. Let's use our new class

>>> import people
>>> addressBook = {}
>>> addressBook["Luis"] = people.Person("lsb", "Barro")
>>> addressBook["Robert"] = people.Person(surname="Lupton")
>>> print addressBook["Luis"].email
lsb

Interpreted Languages Intro to Python Libraries Beyond Libraries

Dynamic typing

Let's return to another old friend, max1

def max(a, b):
if a > b:

return a
else:

return b

That's it.
>>> print max(1, 2)
2
>>> print max("a", "b")
'b'
>>> print max(["a", "b"], ["a", "c"])
['a', 'c']

>>> import people
>>> Luis = people.Person("lsb", "Barro")
>>> Robert = people.Person("rhl", "Lupton")
>>> print max(Luis , Robert)
(lsb , Barro)

The comparison is consistent-but-unde�ned. If we want to
sort by the email address:

def __cmp__(self , rhs):
return cmp(self.email , rhs.email)

and now max works as expected.
1actually, max is a builtin, but builtin names are not protected

Interpreted Languages Intro to Python Libraries Beyond Libraries

Libraries

The O�cial Library

http://docs.python.org/library/index.html

Python has many libraries. I'll skim the surface of two:

matplotlib

Plotting

numpy

Array operations

Enthought Scienti�c Python

http://www.enthought.com/products/epd.php

http://docs.python.org/library/index.html
http://www.enthought.com/products/epd.php

Interpreted Languages Intro to Python Libraries Beyond Libraries

Plotting, matplotlib

There are a number of plotting packages available for
python; I'll concentrate on matplotlib.

The package is available from Enthought or

http://matplotlib.sourceforge.net/index.html

Defaults are set in $HOME/.matplotlibrc, e.g.
backend : TkAgg

Using TkAgg (which is probably a good idea) requires that
your version of python was built with tkinter support.
matplotlib can use other backends (e.g. WXAgg) if you have
the proper package installed (e.g. wxPython)

http://matplotlib.sourceforge.net/index.html

Interpreted Languages Intro to Python Libraries Beyond Libraries

Plotting using matplotlib

There are two ways to use matplotlib

Interactive:

uses matplotlib.pyplot package

good for quickly making single plots, hiding all the

object-oriented aspects.

supposedly looks very similar to matlab

Object-oriented (more pythonic):

Renderers which provide an abstract interface to drawing

primitives (e.g. draw_path)

Backend objects which take care of how to actually draw

the object (e.g. TkAgg to use Tk)

A FigureCanvas to draw on

An Artist that knows how to use renderers to draw on

canvases.

If you need �ne control over your plots you need to know
the classes and their methods

Interpreted Languages Intro to Python Libraries Beyond Libraries

Interactive plotting with matplotlib

import matplotlib
import matplotlib.pyplot as plt
import numpy

make data
x = numpy.linspace (0.0, 9.0, 19)
model = numpy.sin(x)
y = numpy.random.normal(loc=model , scale =0.2)
z = x**2
yerr = numpy.abs(y - model)

plot the data
plt.plot(x, y, "b.", label="My data points")
plt.plot(x, model , "r-", label="Best -fit line")
plt.errorbar(x, y, xerr=None , yerr=yerr , fmt=None , color='b')

Labels
plt.xlabel("x")
plt.ylabel("y")
plt.title("title")

add a legend using the labels you gave to plot()
fontProps = dict(size = "small")
plt.legend(loc="upper left", prop=fontProps , ncol =1)

Show the figure (should pop up a new window)
plt.show()
Save the plot to a file
plt.savefig("figures/plot_sin.pdf", format="pdf")

Clear the figure (so we can make a new one)
plt.clf()

Interpreted Languages Intro to Python Libraries Beyond Libraries

plot_sin.pdf

0 2 4 6 8 10
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

title

My data points

Best-fit line

Interpreted Languages Intro to Python Libraries Beyond Libraries

Format characters

The format string is of the form CM (ColourMarker)

b blue - solid line . point
g green -- dashed line , pixel
r red : dotted line o circle
c cyan -. dot-dash line v triangle_down
m magenta � triangle_up
y yellow < triangle_left
k black > triangle_right
w white

There are more colours, but it's better to use the color

keyword. For markers, it's really better to use the marker

and linestyle keywords

Interpreted Languages Intro to Python Libraries Beyond Libraries

OO plotting with matplotlib

The matplotlib command to select the third sub-window
out of a 2x2 set is

figure.add_subplot (2, 2, 3)

so I could say
figure.add_subplot (2, 2, 1)
make a plot
figure.add_subplot (2, 2, 2)
make another plot
figure.add_subplot (2, 2, 3)
keep plotting
figure.add_subplot (2, 2, 4)
plot plot plot

But I'm lazy and I don't like duplicating 2, 2

Instead, I'll use a generator
def makeSubplots(figure , nx=2, ny=2):

""" Return a generator of a set of subplots """
for window in range(nx*ny):

yield figure.add_subplot(nx , ny , window + 1) # 1-indexed

subplots = makeSubplots(fig)
Initialize
axes = subplots.next()

Interpreted Languages Intro to Python Libraries Beyond Libraries

Panel I: Histogram

#make the figure (Artist object) that will draw the plot
fig = matplotlib.figure.Figure ()

#make the canvas where the figure will be drawn
from matplotlib.backends.backend_pdf import FigureCanvasPdf as FigCanvas
canvas = FigCanvas(fig)

def makeSubplots(figure , nx=2, ny=2):
""" Return a generator of a set of subplots """
for window in range(nx*ny):

yield figure.add_subplot(nx , ny , window + 1) # 1-indexed

subplots = makeSubplots(fig)
Initialize
axes = subplots.next()

#make a histogram of residuals , returns bin delimiters and number/bin
myhist = axes.hist(yerr , bins =5)
axes.set_title("y residuals")

Interpreted Languages Intro to Python Libraries Beyond Libraries

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7
y residuals

Interpreted Languages Intro to Python Libraries Beyond Libraries

Panel II: Log-linear

Initialize and make a log plot
axes = subplots.next()
axes.semilogy(x, z, "g-.")

Move the axis label to the right hand size
axes.yaxis.set_label_position("right")
axes.set_ylabel(r"latex: $x^2+\ sqrt{\sigma}$", size="small")

can work in pixel , figure , or axes or plotting coordinates
in this case put the text in 60%, 10% of the axes
axes.text (0.6, 0.1, "lower right", transform=axes.transAxes)

Interpreted Languages Intro to Python Libraries Beyond Libraries

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7
y residuals

0 1 2 3 4 5 6 7 8 9
10-1

100

101

102

la
te

x
:
x

2
+
√ σ

lower right

Interpreted Languages Intro to Python Libraries Beyond Libraries

Panel III: Scatter Plot

Initialize and calculate points
axes = subplots.next()
xs = numpy.random.random (100)
ys = numpy.random.random (100)*2
zs = numpy.sqrt(xs**2 + ys **2/4.0)

Make plot
sc = axes.scatter(xs , ys, c=zs)
fig.colorbar(sc)

Interpreted Languages Intro to Python Libraries Beyond Libraries

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7
y residuals

0 1 2 3 4 5 6 7 8 9
10-1

100

101

102

la
te

x
:
x

2
+
√ σ

lower right

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2
0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

Interpreted Languages Intro to Python Libraries Beyond Libraries

Panel IV: Contours

mlab has lots of matlab -like functions; we'll just fake some data
from matplotlib.mlab import bivariate_normal

Initialize and calculate data
axes = subplots.next()
axis = numpy.linspace (-2.0, 2.0, 100)
X, Y = numpy.meshgrid(axis , axis)
Z = bivariate_normal(X, Y, 0.7, 1.0, 0.0, 0.0) # from matplotlib.mlab

Make a contour plot
CS = axes.contour(X,Y,Z)
#put labels on the contous
axes.clabel(CS , inline=1, fontsize =8)

Change the ticklabel size
try:

axes.tick_params(axis="x", labelsize="small") # new in 1.0
except AttributeError:

for l in axes.xaxis.get_ticklabels () + axes.yaxis.get_ticklabels ():
l.set_size("x-small")

Save the plot to a file
fig.savefig("figures/plot_multi.pdf")

Interpreted Languages Intro to Python Libraries Beyond Libraries

plot_multi.pdf

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7
y residuals

0 1 2 3 4 5 6 7 8 9
10-1

100

101

102

la
te

x
:
x

2
+
√ σ

lower right

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2
0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0
.0

3
0 0

.0
3
0

0.060

0
.0

9
0

0
.1

2
0

0.150

0.180

Interpreted Languages Intro to Python Libraries Beyond Libraries

Array operations, numpy

While the array library, numpy, is not part of the python
standard library it is widely available.

NumPy home (or get it from Enthought)

http://numpy.scipy.org

We used a few pieces of numpy in the matplotlib examples:
import numpy

x = numpy.linspace (0.0, 9.0, 19)
model = numpy.sin(x)

yerr = numpy.abs(y - model)
zs = numpy.sqrt(xs**2 + ys **2/4.0)

numpy.random.seed (666)
xs = numpy.random.random (100)
y = numpy.random.normal(loc=model , scale =0.2)

axis = numpy.linspace (-2.0, 2.0, 100)
X, Y = numpy.meshgrid(axis , axis)

http://numpy.scipy.org

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy Arrays

>>> x = numpy.linspace (0.0, 5.0, 11); print x
[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.]

We could have used arange (analogous to python's range):
>>> print numpy.arange (0.0, 5.1, 0.5)
[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.]

There's also
>>> print numpy.zeros(4), numpy.ones(4), numpy.empty(4, dtype='i')
[0. 0. 0. 0.] [1. 1. 1. 1.] [9 0 18402543 1]

>>> x = numpy.arange (5); print numpy.multiply.outer(x, x)
[[0 0 0 0 0]
[0 1 2 3 4]
[0 2 4 6 8]
[0 3 6 9 12]
[0 4 8 12 16]]

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy Mathematical functions

>>> x = numpy.arange (5)
>>> y = numpy.sin(x); print y
[0. 0.84147098 0.90929743 0.14112001 -0.7568025]

There are lots of other mathematical builtins (sin, cos, tan,
arcsin, arctan2, abs, sqrt, . . .)

>>> print zip(x, y)
[(0, 0.0), (1, 0.8414709848078965) , (2, 0.90929742682568171) ,
(3, 0.14112000805986721) , (4, -0.7568024953079282)]

>>> print "\n".join(["%g %6.3f" % (t, s) for t, s in zip(x, y)])
0 0.000
1 0.841
2 0.909
3 0.141
4 -0.757

(OK, so that's a python, not numpy, trick)

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy Random Numbers

>>> numpy.random.seed (666)
>>> numpy.random.random (10)
array ([0.70043712 , 0.84418664 , 0.67651434 , 0.72785806 , 0.95145796 ,

0.0127032 , 0.4135877 , 0.04881279 , 0.09992856 , 0.50806631])

(n.b. I didn't say print, so I got the repr not the str value
of the result)

>>> print numpy.random.normal(loc=numpy.arange (5), scale =0.2)
[-0.2177586 0.88484585 1.66341985 3.04583705 3.64867496]
>>> print numpy.random.normal(numpy.arange (5), 0.2)
[0.16892652 1.05544397 2.17058031 3.03891992 4.26212754]

The two calls are identical, but the random numbers are (of
course) di�erent.

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy in n-D

>>> axis = numpy.linspace (-2.0, 2.0, 5)
>>> X, Y = numpy.meshgrid(axis , axis)
>>> print X
[[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]]

>>> print Y
[[-2. -2. -2. -2. -2.]
[-1. -1. -1. -1. -1.]
[0. 0. 0. 0. 0.]
[1. 1. 1. 1. 1.]
[2. 2. 2. 2. 2.]]

>>> print numpy.cos(X)*numpy.sin(Y)
[[0.37840125 -0.4912955 -0.90929743 -0.4912955 0.37840125]
[0.35017549 -0.45464871 -0.84147098 -0.45464871 0.35017549]
[-0. 0. 0. 0. -0.]
[-0.35017549 0.45464871 0.84147098 0.45464871 -0.35017549]
[-0.37840125 0.4912955 0.90929743 0.4912955 -0.37840125]]

>>> print numpy.fft.fft(X)*numpy.sin(Y)
[[-0.00000000+0.j 2.27324357 -3.12885135j 2.27324357 -0.73862161j

2.27324357+0.73862161j 2.27324357+3.12885135j]
[-0.00000000+0.j 2.10367746 -2.89546363j 2.10367746 -0.68352624j

2.10367746+0.68352624j 2.10367746+2.89546363j]
[0.00000000+0.j -0.00000000+0.j -0.00000000+0.j

0.00000000 -0.j 0.00000000 -0.j]
...

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy extended indexing

You aren't restricted to using scalars as array indexes:
>>> x = numpy.arange(-4, 5); print x
[-4 -3 -2 -1 0 1 2 3 4]
>>> i = x**2 > 4
>>> print i
[True True False False False False False True True]
>>> print x[i]
[-4 -3 3 4]

>>> x[i] = 10 + numpy.abs(x[i])
>>> print x
[14 13 -2 -1 0 1 2 13 14]

>>> I = numpy.array([2, 7])
>>> print x[I]
[-2 13]

Interpreted Languages Intro to Python Libraries Beyond Libraries

numpy Linear Algebra

>>> n = 3; i = numpy.arange(n); M = numpy.zeros(n*n); M.resize(n, n)
>>> M[(i,i)] = i + 1; print M
[[1. 0. 0.]
[0. 2. 0.]
[0. 0. 3.]]

>>> numpy.linalg.inv(M)
array ([[1. , 0. , 0.],

[0. , 0.5 , 0.],
[0. , 0. , 0.33333333]])

>>> M = numpy.matrix(M)
>>> U, s, V = numpy.linalg.svd(M)
>>> U*numpy.diag(s)*V # should == M
matrix ([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

Traps await the unwary:
>>> M = numpy.zeros(n*n); M.resize(n, n); M[(i,i)] = i + 1
>>> U, s, V = numpy.linalg.svd(M)
>>> U*numpy.diag(s)*V
array ([[0., 0., 0.],

[0., 2., 0.],
[0., 0., 0.]])

Uh oh; that's an element-by-element product. An array is
not a matrix; you have to say

>>> numpy.dot(U, numpy.dot(numpy.diag(s), V))

Interpreted Languages Intro to Python Libraries Beyond Libraries

Other numpy capabilities

numpy has lots of libraries:

FFTs

Linear algebra

Statistics

etc.

I used the statistics package in analyzing the course
questionnaire:

cov = numpy.cov(data , rowvar=False)
for i in range(len(cov [0])):

print "%6.3f" numpy.mean(data[:, i]), \
" ".join(["%6.3f" % x for x in cov[i]])

The scipy package adds many more:

N-dimensional image convolution

Interpolation

Sparse linear algebra (e.g. 3M x 5k least-squares
problems)

Optimization

etc.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Embedding C/C++/Fortran in python

One extremely powerful technique is to wrap your own code
in python, a topic that we'll cover later in the course. To
whet your appetite, here's some analysis code that I wrote
last week:

Interpreted Languages Intro to Python Libraries Beyond Libraries

mosaic.py

smoothingKernel = AnalyticKernel(ksize , ksize ,
GaussianFunction2D(alpha , alpha))

for f in filters:
imgList = vectorMaskedImageF()

for run , camCol , (field0 , field1) in inputs:
camColImgList = vectorMaskedImageF()

fields = []
for field in range(field0 , field1 + 1):

exposure = getExposure(run , camCol , field , f)

if subtractBackground:
bkgd = makeBackground(mim , BackgroundControl(nx , ny))

im = exposure.getMaskedImage().getImage()
im -= bkgd.getImageF()
del im

cmimg = maskedImageFactory(exposure.width(),exposure.height())
convolve(cmimg , exposure.getMaskedImage(), smoothingKernel)
exposure.setMaskedImage(cmimg)

img = maskedImageFactory(exposure.getDimensions())
warpedExposure = makeExposure(img , wcs0)
warpExposure(warpedExposure , exposure , warpingKernel)

Every operation in red is written in C++.

	Interpreted Languages
	Intro to Python
	Libraries
	Beyond Libraries

