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A road map for light curve classification:

Light Curves Features Classes
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See: Richards et al. (2011) arXiv:1101.1959
Bloom & Richards (2011) arXiv:1104.3142
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Sample Selection Bias

In astronomical problems, the training (labeled) and testing (unlabeled)
sets are often generated from different distributions.
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Sample Selection Bias
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of Random Forest classifier on SN
Challenge testing data

From Richards et al. (2011)
arXiv:1103.6034
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Sample Selection Bias in
Variable Star Classification

with Dan Starr, Adam Miller, Nat Butler, James Long, John
Rice, Josh Bloom (UC Berkeley), Henrik Brink & Berian
James (DARK)

Richards et al. (2011), in prep.

J. Richards Overcoming Sample Selection Bias 7



Sample Selection Bias in VarStar Classification

Black: Training set (OGLE+Hipparcos, see Debosscher et al. 2007)
Red: Testing set (All Sky Automated Survey, ASAS; Pojmanski 2002)
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Sample Selection Bias in VarStar Classification

Training sets in variable star studies are biased:
Populations of well-studied objects are inherently biased

toward brighter/closer sources with better quality data
See James Long’s talk!

Available training data are typically from older, lower
quality detectors

Each survey has different characteristics, aims, cadences...

A Training data are often generated from idealized models

This can cause significant problems for off-the-shelf
supervised methods:

Poor model selection — risk minimization (e.g., by
cross-validation) is performed with respect to Pryain(X, y)

Regions of feature space ignored by the training data —
catastrophically bad extrapolation
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Sample Selection Bias in VarStar Classification

Example: ASAS varstar classification (50,124 stars in ACVS)

Results of off-the-shelf Random Forest classifier:

RF
ACVS

a.Mira 50.91

b. Semireg PV
¢ RV Tauri

d. Classical Cephe
e. Pop. Il Cepheid
9. RR Lyrae, FM
h. RR Lyrae, FO

i. AR Lyrae, DM

1. Beta Cephei

m. Slowly Puls. B
p. Per. Var. SG

q. Chem. Peculiar
r. Wolf-Rayet

s. T Tauri

t. Herbig AE/BE

u. S Doradus

v. Ellipsoidal

w. Beta Persei

x. Beta Lyrae

y. W Ursae Maj.

n. Gamma Doradus
o. Pulsat

d. Classical Cepheid .. 0.08 0.01 0.01 0.04

e. Pop. Il Cepheid 0.19 0.04 0.02 0.010.25

{. Multi. Mode Cepheid X .0110.05 0.13 0.02 0.06
9. RR Lyrae, FM 0.8 0.05
h. RR Lyrae, FO 0.01)0.04}0.27| 0.02
j. Delta Scuti
. Beta Cephei 0.140.29
q. Chem. Peculiar X 0.1
w. Beta Persei 0.02 0.01
x. Beta Lyrae 0.06 0.02
y. W Ursae Maj. 0.08 0.01

UNKNOWN X . 0.2 0.02 0.17 0.01

3677 530 0 360 1369 20 7038 526
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Some Methods
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Methods: Importance Weighting (IW)

Idea: Choose classifier that minimizes statistical
risk over distribution of the testing set.
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Methods: Importance Weighting (IW)

Idea: Choose classifier that minimizes statistical
risk over distribution of the testing set.

Use importance weights on training set:

Wi — PTest(xhyi) _ PTest(xi)PTest(yi‘xi) _ PTest(xi)
: P’_[‘rain(xia )/i) PTTain(xi) P Train ()/i |Xi) PTrain(xi)

Issues:

Difficult to estimate high-dimensional feature densities.

IW is asymptotically sub-optimal when the statistical
model is correctly specified (Shimodaira 2000)

Requires the support of the testing distribution be a
subset of the support of the training distribution
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Methods: Co-training (CT)

Idea: Iteratively add to the training set the most
confidently classified testing data

J. Richards Overcoming Sample Selection Bias 13



Methods: Co-training (CT)

Idea: Iteratively add to the training set the most
confidently classified testing data

CT approach (Blum & Mitchell 1998)
Iterate until all data are in training set:
Build two separate classifiers, h; & hy on disjoint feature
sets x; & X
A Add the most confidently classified testing instances to
the training set of the other classifier

Final classifier: p(y|x) = h1(y|x1)h2(y|x2)

Self-training (ST) performs iterations on a single classifier

Drawback: CT & ST are greedy: dominant classes in the
training data gain undue influence
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Methods: Active Learning (AL)

Idea: Manually label the testing data that would
most help future iterations of the classifier
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Methods: Active Learning (AL)

Idea: Manually label the testing data that would
most help future iterations of the classifier

Key: In astronomy, we often have the ability to selectively
follow up on sources:

» Spectroscopic study

» Query other databases; cross-match

» “Look at” the data

On each AL iteration, select a batch of objects from the entire
testing set for manual labeling via a query function
(pool-based, batch-mode AL)

Heuristic: Query data in regions of feature space that are
densely populated with testing data and sparsely populated
with training data.
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Methods: Active Learning (AL)

Proposed RF AL query functions; Richards et al. (2011)

AL1. Select testing data point (x' € /) that is most
under-sampled by the training data (£):

_ PTest(x,) ~ ngu p(xlax)/NTest
PTrain(x/) Zzeﬁ P(x,; z)/NTrain

AL2. Select testing data point that maximizes the total
change in the RF probabilities over the testing data:

S (X/) (1)

eru p(x',x)(1 — max, ﬁRF(Y|X))
> e P(X,2) +1

Here, 'BRF(y|x) is the estimated RF prob and p(x’,x) is the RF
proximity measure

52(x') = (2)
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Experiment: OGLE+Hipparcos
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Experiment

1542 OGLE+Hip sources
(25 classes) randomly
split into:

Training (black A)
Testing (red x)

Selection function:

log Period

[ o log(P) log(A)Y/*

We compare methods
based on error rate on
testing data

-3.0 -2.5 -2.0 -15 -1.0 -0.5 0.0 0.5

log Amplitude
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Experiment: Results
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Experiment: Results

AL performs better than the default RF for under-represented classes

[ Class | Ntvam Nresw RF__IW ST CT__ALL _AL2 |
All 771 771 280 285 206 300 273 259
Delta Scuti 25 89 157 157 157 157 154 15.6
W Ursa Maj. 16 43 407 360 512 605 27.0 27.1
Mira 121 23 87 87 87 87 91 87
Class. Cepheid 122 68 2.9 2.9 15 15 3.1 1.6

0.29
L

Top: % error on testing
subsets

Right: AL testing error
vs. # samples
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L
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L

Error rates decrease more

0.25
L

Misclassification Rate
026
.

— AL1ld N

quickly using AL1 (solid) and
AL2 (dashed) than random - EE%
selection (dot-dashed)

0.24
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Application: ASAS




Application: ASAS

We use AL to classify all 50124 sources in the ACVS catalog

Training set: 1524 well-understood stars (in 25 classes) from
OGLE+Hipparcos

Perform 9 AL iterations of 50
sources each selected by
sampling from S

1e+02 1e+03
I I

Period

le+01
I

Incorporate labeling “cost”:

5(x) = S(x)(1 - C(x))

11 users labeled sources. Use
IEThresh crowd-sourcing of
Donmez et al. (2009)
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ALLSTARS AL Web Interface
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Results: ASAS

Performance metrics of classifier vs. AL iteration:
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Results: ASAS

Distribution of max RF probabilities over 50124 ASAS sources:

a. Default RF

AL, step 1
AL, step 2
AL, step 3
AL, step 4
AL, step 5
AL, step 6

AL, step 7

AL, step 8

AL, step 9

T T T 1
0 0.2 0.4 0.6 0.8 1

maxy Pre(Y|X)
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Results: ASAS

AL classificati

d. Classical Cephe O

1. Beta Cephei
n. Gamma Doradus
q. Chem. Peculiar
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c. RV Tauri
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g. RR Lyrae, FM
h. RR Lyrae, FO
i. RR Lyrae, DM
. Delta Scuti

k. Lambda Bootis
o. Pulsating Be

p. Per. Var. SG

r. Wolf-Rayet

s. T Tauri

u. S Doradus

v. Ellipsoidal

w. Beta Persei

X. Beta Lyrae

1. Classical Cepheid L 0.04 0.06 0.02 0.01 0.03 0.03 0.03 0.04
€. Pop. Il Cepheid . 0.09 0.06 0.01 0.07 0.06 0.02 0.04 0.16 0.02 0.03 0.08
Vulti. Mode Cepheid y i I 0.01 0.01 0.09 0.05 0.01 0.02 0.11
9. RR Lyrae, FM
h. RR Lyrae, FO
. Delta Suti
1. Beta Cephei .
q. Chem. Peculiar I X 0.06
w. Beta Persei 0.01
x. Beta Lyrae I I 0.01 0.01
y. W Ursae Maj. ! 0.01 0.01 0.01

UNKNOWN 0.01 0.03 0.02 0.01 0.06

3269 26010 49 472 6 184 948 629 2436 6122
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Sample selection bias is a debilitating problem in many
areas of astronomy

Biases in training samples cause (1) poor model selection,
and (2) catastrophic extrapolation

To mitigate its effects, can (1) use weights on training
set, or (2) selectively add data to the training set

B We find that Active Learning is a viable & effective
approach to the problem of sample selection bias

B In both an experiment & application to a real survey, we
find that AL outperforms other approaches
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